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Theories of Interest Rate 

Expectations Theory 

Under the Expectations Theory, bonds with different maturity terms are assumed to be perfect 

substitutes. Therefore, if a bond with a long-term maturity is replaced by a sequence of bonds with short-

term maturities, a return on a long-term bond must be equal to a compounded return on a sequence of 

short-term bonds. If we denote the yield rate on short-term (three-month) bonds as ��,�, the expected 

yield rate on short-term bonds in a future period s>t as ��,�� , and the yield rate on a bond with maturity τ 

as ��,�, then the relationship between the actual and expected short-term yield rates and the yield rates 

with longer maturities can be described by the following equation: 

�1 + ��,��� = �1 + ��,�� × �1 + ����,�� � × … × �1 + ������,�� � (E1) 

Based on equation (E1), we can derive the long-term yield rate ��,� with maturity term τ using a sequence 

of current and expected short-term yields. Therefore, under the Expectations Theory, the problem of a 

term structure forecast is reduced to the problem of properly forecasting future expected short-term yield 

rates. The complete term structure curve is then constructed using the sequences of short-term yield 

rates as per equation (E1). 

If the expected short-term yields are constant, then the term structure of the yield rates is also constant: ��,� = ��,�. To match the increasing term structure of the actual yields that are typically observed in the 

market, the expected short-term yield rates ����,��  must be increasing even faster than the term structure. 

An illustrative example of the yield term structure and projected short-term yields is shown in the exhibit 

below. 

Increasing term structure and projected expected short-term yield rates 

 

To summarize, rational expectations models produce unrealistic projected expected short-term rates but 

the generated bond prices are arbitrage free. 

maturity 

yield 

term structure 

projected short-term yields 



Liquidity Premium Theory 

Description 

Under an alternative Liquidity Premium Theory, bonds with different maturities are not viewed as perfect 

substitutes and lenders generally require a premium for bonds with longer maturities to compensate for 

the inflation and interest rate risks. The term structure under the Liquidity Premium Theory is modelled 

as follows: 

��,� = ��,�� + ��,� (E2) 

where the term ��,��  is estimated using equation (E1) and the term ��,� represents a maturity-term 

premium component of the bond yield rates. Under this approach, the term structure forecast problem 

is broken down into two separate components: (i) forecasting the expected future short-term rates ��,��  

and calculating the ��,��  components of the medium and long-term rates; and (ii) forecasting the term 

premiums ��,� for the medium and long-term rates. 

The liquidity premium theory generally produces more realistic projected expected short-term yield rates. 

However in addition to the short-rate process, the liquidity premium theory requires to model the term 

premium stochastic process. Moreover certain restrictions must be imposed on the markets to ensure 

that short-term bonds cannot be used as substitutes to long-term bonds and no-arbitrage opportunities 

are generated by the term premium.  

Term Premium Arbitrage 

 An example of arbitrage opportunities that may be created based on term premium presence in the bond 

market is illustrated in the diagram below. Suppose that F is a financing subsidiary that receives funds 

from the corporate group parent P and lends them to borrowing subsidiaries Bi. Then the subsidiary F can 

apply the following lending strategy to generate arbitrage profits. 

Illustrative example of the term premium arbitrage 

 

To match the funds received from the borrowers Bi and repaid to the parent P, the financing subsidiary F 

exercises the required number of put options whenever the debt to the parent P is due. 

F P 

B1 

Bn 

Short-term (1-

year) financing 

at fixed 1% 

Long-term (10-year) 

financing at fixed 6%; 

Pay-on-demand (put) 

option for 3% discount 



In the example, the financing cost for the subsidiary F is 1% and the interest income is 3% (= 6% - 3%). The 

profit 2% (= 5% - 3%) is generated due to a risk-free arbitrage produced by the term-premium trading. The 

example illustrates the following points: 

► In the example, 3% put option discount is the discount paid over full 10-year term. Annual 

discount is approximately 30bps = 3% / 10-year term. As the put option is exercised, the 3% is 

already is sunk cost that was paid by the lender. Therefore the full 3% (and not the 30bps) is 

subtracted from the lender’s term premium.  

► The discount on the put option eliminates partially the term premium on the long-term bond. The 

arbitrage argument can be used to derive a high-level proxy (lower bound) for the put option: ���� = �� − ���  

where � is the put option price and � is maturity term. For example, if term premium equals 3% 

(�� − �� = 3%) and maturity term equals 5 years (� = 5), then the lower bound for the put 

option annual discount is 60bps (0.6% = �% ). More generally, a 5-year put option annual discount 

must be at least 20% of the related 5-year term premium. 

► The parameters in the put option valuation must be set correctly to ensure that the term structure 

is matched in the put option model. The put option model must produce the put option value 

numbers that are consistent with the term structure premium; 

► In practice, both call and put options typically have a penalty structure. Call options have make-

whole provisions and a step-wise penalty structure after the make whole provision expires. Put 

options typically have a grace period when they cannot be exercised. Put options can also typically 

be exercised only at specific dates (for example at annual frequency).   

Affine Term Structure Models 

Affine term structure models (“ATSM”), or no-arbitrage models, are a popular approach to model interest 

rates because the term structure derived under this approach is arbitrage-free. The affine structure of 

interest rates is modelled as follows. At the first step, short-term yield rates��,� are described using n 

latent variables !�,�, … !",� as follows 

��,� = # !$,�$%�,..,"  

where each latent factor !$,� is described as follows:  

 ∆!$,� = '$ × �($ − !$,�� + )$*!$,�+$,�  (E4) 

Yield rates with longer maturity terms are derived from short-term yield rates assuming that no arbitrage 

opportunities exist for bonds with longer maturity terms. An arbitrage-free price of a zero-coupon bond 

with maturity term τ, denoted as ��,�, is described by the following equation: 

��,� = ,∑ �./,0�1/,02/,3�/45,…,6  

Respectively, yield rates on longer-term zero-coupon bonds are calculated as follows 



��,� = − ln ��,�9 = − ∑ :$,�$%�,…,"9 + # ;$,�9 × !$,�$%�,…,"  (E5) 

Equation (E4) is a VAR model for the unobserved factors, and equation (E5) describes a linear relationship 

between the unobserved factors and the yield term structure curve. 1 

The described model described in this section is a generic multi-dimensional affine term structure model. 

The discussion below focuses specifically on one-dimensional affine term structure model. 

Interest Rate Process 

The interest rate process models the stochastic behavior of the short-term rate with given observed 

current rate and given estimated annual volatility. The interest rate process is used to model and evaluate 

the interest rate based derivative instruments such as loan pre-payment option, loan ay-on-demand 

option, etc. 

Interest Rate Model Examples 

General form of interest rate process can be represented as follows: <=� = >?�, =�@ × <� + )?�, =�@ × <A� 

where different models are summarized in the exhibit below 

Model name Drift term Diffusion term 

Equilibrium Models 

Random Walk (with drift) >� = ( ) 

Vasicek (1977) >� = B?C − =�@ ) 

Dothan (1978) >� = B=� )=� 

Rendleman – Bartter >� = B=� )=� 

Courtadon >� = B?C − =�@ )=� 

Constant Elasticity of Variance (CEV) >� = B=� )�=�DE 

Marsh-Rosenfeld (1983) >� = C=��?��D@ + B=� )�=�DE 

Cox – Ingersoll – Ross (CIR, 1985) >� = B?C − =�@ )�=��E 

Exponential Vasicek (EV) >� = =� × ?(� − B� ln =�@ )=� 

                                                           
1 Equations (E4) and (E5) of the ATSM model can be represented as a special case of equation (E3). Parameters : and Λ in the 

ATSM model specification are described as follows. 

1. Matrix : is a diagonal matrix with :$,$ = 1 − '$  diagonal elements; 

2. Elements Λ$,� of matrix Λ are calculated as Λ$,� = 1/,0� , where ;$,� = E×?�GH/0��@?D/�I/�J/@×?�GH/0��@�ED/), K$ =
L?'$ + M$@E + )$E, and parameter M$  is interpreted as the market price of risk. 



Model name Drift term Diffusion term 

No-arbitrage Models 

Ho-Lee (random walk, 1986) >� = (� ) 

Hull-White (extended Vasicek, mean 

reversion, 1990) 
>� = (� − B�=� )� 

Hull-White (extended CIR, 1990) >� = (� − B�=� )�=��E 

Black-Derman-Toy (1990)   

Black-Karazinski (1991) >� = (� − B� ln =� ) 

Most of the above models allow to derive explicit solution for the bond bullet prices. 

Model parameters are estimated by (i) calculating sample mean or (ii) running a simple regression on the 

drift parameter (in the case of, respectively, (i) random walk or (ii) mean-reversion process) and on 

constructed residuals (in case of, respectively, (i) homoscedastic and (ii) heteroscedastic model). 

Parameter Annualization 

Parameters of the interest rate model are generally estimated based on daily data. The interest rate trees 

are modelled based on quarterly, semi-annual or annual data. The formulas below show how the daily 

model parameters are converted into equivalent parameters with lower data frequency. 

Mean-Reversion Process 

Suppose that the process, estimated using daily data, is described by the following equation: 

∆�� = ?( − B��@<N + )<A� 

or, equivalently, 

���� = (<N + ?1 − B<N@�� + )<A� 

The relationship between ���� and ���I yields can be represented then as follows. 

  ���� = �1 + ?1 − B<N@�(<N + ?1 − B<N@E���� + )?<A� + ?1 − B<N@<A���@ = ⋯=  �1 + ?1 − B<N@ + ⋯ + ?1 − B<N@I���(<N + ?1 − B<N@I�����I+ )�<A� + ?1 − B<N@<A��� + ⋯ + ?1 − B<N@I��<A����I� 

or, equivalently, 

���� = 1 − ?1 − B<N@IB<N (<N + ?1 − B<N@I�����I + )<AQ  



Value of ' is selected as  

' = <�<N 

so that the value of ?1 − B<N@I is approximated as  

?1 − B<N@I = R1 − B<�<�/<NTU�U� ~,�WU� 

The quarterly mean-reversion process is represented then as follows. 

���� − �����I = X1 − ,�WU�B<� (Y × <� − X1 − ,�WU�<� Y <� × �����I + )<AQ  

where volatility of )<AQ  is equal to 

)ZE = )E × <N × �1 + ?1 − B<N@E + ⋯ + ?1 − B<N@E?I��@� = )E × <N × 1 − ?1 − B<N@EI��1 − ?1 − B<N@E  

and, after approximating ?1 − B<N@I~,�WU� 

)ZE = X)E × 1 − ,�EWU�2B<� Y × <� 

To summarize, 

\]]̂
]]_ (̀ = 1 − ,�WU�B<� ( = BZB × (

BZ = 1 − ,�WU�<�)ZE = )E × 1 − ,�EWU�2B<�
 

or 

\]]
]̂
]]]
_ (̀ = 1 − ,�WaU�U�Bb<� (c = (c × BZBb

BZ = 1 − ,�WaU�U�<�
)ZE = )bE × <� × 1 − ,�EWaU�U�2Bb <�<N = )bE × <� × BZBb × 1 + ,�WaU�U�2 × <N

 

where �(c, Bb� are regression parameters estimated using daily yield sample. 



Random Walk 

Random walk is a special case of mean-reversion process with d = 0. The parameters are equal  

e (̀ = (BZ = B)ZE = )E 

Terminal Distribution Parameters 

Parameters of the short-rate terminal distribution are summarized in the exhibit below. 

Model name Drift term Diffusion term 

Equilibrium Models 

Random Walk >� = =f + (� )� = )√� 

Vasicek (1977) 

>� =   ,�W�=f +   1B × ?1 − ,�W�@( 

or >� =   ,�W�=f + ?1 − ,�W�@�∗  

where �∗ = C = iW is the steady state 

)� = ) × j1 − ,�EW�2B  

Dothan (1978)   

Rendleman – Bartter   

Courtadon   

Constant Elasticity of Variance 

(CEV) 
>� =   ,�W�=f +   1B × ?1 − ,�W�@(  

Marsh-Rosenfeld (1983)   

Cox – Ingersoll – Ross (1985)   

Exponential Vasicek (EV)   

No-arbitrage Models 

Ho-Lee (random walk, 1986) >� = =f + k (�<N�
f = =f + (� )� = )√� 

Hull-White (extended Vasicek, 

mean-reversion, homoscedastic, 

1990) 

>� = ,�W�=f + k ,�W?���@(�<N�
f  )� = ) × j1 − ,�EW�2B  

Hull-White (extended CIR, mean 

reversion, heteroscedastic, 1990) 
  

Black-Derman-Toy (1990)   

Black-Karazinski (1991)   

 

Zero-Coupon Bond Bullet Prices 

The zerto-coupon bullet prices for different models are summarized in the exhibit below. 



Model name Zero-coupon bond bullet price 

Equilibrium Models 

Random Walk 

�� = ,�lm���Ei�n��opn�q
 

Equivalently �� = : × ,�1lm, where ; = � and : = ,�5ni�n�5rpn�q
 

Vasicek (1977)  

Dothan (1978)  

Rendleman - Bartter  

Courtadon  

Constant Elasticity of 

Variance (CEV) 
 

Marsh-Rosenfeld (1983)  

Cox – Ingersoll – Ross (1985)  

Exponential Vasicek (EV)  

No-arbitrage Models 

Ho-Lee (1986) 

�� = ,�lm��s it×?���@U���opn�qum  

Equivalently �� = : × ,�1lm, where ; = � and : = ,� s it×?���@U��5rpn�qum  

Hull-White (extended 

Vasicek, 1990) 

�� = : × ,�1lm 

where 

; = ���GvuW  and : = ,?wGu@×�xnyGzn/n�vn �znwn{v  

Hull-White (extended CIR, 

1990) 

�� = : × ,�1lm 

where 

; = E��Hu���?D�W@×?�Hu��@�ED and : = | ED�?v}H@u/n?W�D@?�Hu��@�ED~nvyzn
 where K = √BE + 2)E 

Black-Derman-Toy (1990)  

Black-Karazinski (1991)  

 

Parameter Calibration 

Overview 

The yield structure �� of zero-coupon bond is defined as follows: �� = ,���u  

or 



�� = − ln ���  

The yield structure can be estimated from the observed bond prices. The parameters of the model are 

calibrated so that the theoretical term structure matches as close as possible the estimated term 

structure. For different models, the equation can be represented as follows: 

Random Walk 

After substituting �� = ,�lm��5ni�n�5rpn�q
, we get −ln �� = =f� + �E (�E − �o )E�� or 

��� − ;=f = 12 (�E − 16 )E�� 

Function ; = � does not depend on model parameters and function  

− ln : = 12 (�E − 16 )E�� = :� × ( + :E × )E 

is a linear function of parameters ( and )E, and therefore the parameters can be estimated directly using 

simple linear regression model.  In the equation, :� = �E �E and :E = − �o ��. 

Parameters ( and )E can be estimated by running a simple linear regression model that selects the 

parameters to generate the best fit of the above term structure. The linear regression equation for the 

yield term structure �� is described as follows: 

Calibration of drift and volatility parameters 

�� = =f + 12 (� − 16 )E�E (hw.1) 

The term structure is matched using the regression model 

�� = =f + 12 (� − 16 )E�E + ��  

and applying OLS estimation approach. The parameters can be calibrated either using the latest term 

structure or a panel data of term structures to produce more robust results. 

Alternatively, the volatility can be estimated based on the historical short-rate data 

Estimation of drift and volatility parameters based on sample statistics 

Sample volatility is estimated based on the following short rate representation. <=� = ( × <� + ) × <A�  

so that )b is estimated as a sample standard deviation of the �Ul3√U�� sample: 

)b = N�<,� � <=�√<�� 



In practical applications, <� is assumed constant and is calculated based on the number of business days 

during the year: <� = �E f. The equation for the sample volatility parameter becomes 

)b = √250 × N�<,� �<=�� (hw.2) 

Conditional on the estimated volatility parameter, the drift parameter ( can be estimated as follows. 

( = 2� × ?�� − =f@ + 13 )E� (hw.3) 

where � is the maturity term. The drift parameter will generate the term premium � = �� − =f over the 

maturity term �. 

Initial value =f: 

Original value of =f is estimated based on the observed term structure. However after calibrating the 

volatility and drift parameters and generating the corresponding theoretical term structure (hw.1), the 

bullet price of the bond may not match the par value. The initial value =f is solved for implicitly so that the 

bullet value of the bod equals to par. =f: ������� = �d= ?100@ (hw.4) 

Hull-White (extended Vasicek) 

Unconstrained 

After substituting �� = X,?wGu@×�xnyGzn/n�vn �znwn{v Y × ,�1lm , we get −ln �� = pn1n�W − ?1��@×R�n��znn TWn + ;=f or 

��� − ;=f = )E;E4B − ?; − �@ × RdEC − )E2 TBE  

The equation can be rewritten as  

��� − ;=f = −C × ?; − �@ + )E × X;E4B + ; − �2BE Y 

The parameters are estimated as follows. For a given value of B, the function ; = ���GvuW  is estimated and 

the above linear model is estimated. The coefficients )E and C are estimated from the linear model and 

parameter B is selected to minimize the overall sum of squares in the linear regression. The estimation 

procedure is reduced to the optimization problem for a non-linear function of B variable. 

Constrained 

In the constrained version of the model, C = =f so that the steady state is equal to the current yield rate. 

The equation then becomes: 

��� − �=f = )E × X;E4B + ; − �2BE Y 



or, formally,  

;?�@ = �,   :� = 0,   d�<  :E = ;� E4B + ;� − �2BE   
Where ;� = ���GvuW . The price in the case of constrained model is calculated as follows 

�� = ,�pn�1� n�W�1� ��EWn � × ,��lm  

Hull-White (extended CIR) 

After substituting �� = �R 2K,?B+K@�/2?B+K@?,K�−1@+2KT2BC)2 � × ,�1lm , we get −ln �� = − 2BC)2 × ln � 2K,?B+K@�/2?B+K@?,K�−1@+2K� + ;=f or 

��� − ;=f = − 2BC)2 × ln X 2K,?B+K@�/2?B + K@?,K� − 1@ + 2KY 

where K = √BE + 2)E. The parameters are estimated as follows. For a given pair of values of B and ), the 

function ; = E��Hu���?D�W@×?�Hu��@�ED is estimated and then C is estimated from the above linear model. The 

estimation procedure is reduced to the optimization problem for a non-linear function of ?B, )@ variables. 

Ho-Lee Model 

Calibration for the Ho-Lee model is performed as follows. Unlike the equilibrium models, the no-arbitrage 

models are estimated using a sample of term structures � = ���?$@�$%�,…,". The drift parameters (� are 

estimated to match the term structure while the mean-reversion and volatility parameters are estimated 

to match the mean-reversion and volatility in the whole term structure. Therefore, the estimation 

approach is a mix of calibration (when drift parameters are calibrated to match the term structure) and 

regression analysis that matches the volatility and mean reversion to historically observed volatility and 

mean reversion of the term structure. 

The Ho-Lee term structure model is described by the following equation 

��,� = =� − 16 )E�E + 1� k (� × ?� − N@<N�
f  

where <=� = ( × <� + ) × <A�  

The equations show that the term structure in the Ho-Lee model shift in parallel over time: <��,� = <=� = ) × <A� 

for all �. 

The approach is implemented as follows for the Ho-Lee model. 

 For the fixed ) and each observed term structure ��?$@
, the following series is constructed 



��?$@ = ���?$@ − �=f + 16 )E�� 

 Parameters (� are estimated as follows. For a piece-wise constant function (�, the formula s (� × ?� − N@<N�f  can be represented as follows 

k (� × ?� − N@<N�
f = 

 The difference between 

Parameter Sensitivity 

The section studies how sensitive is parameter calibration / estimation to the noise in the underlying yield 

sample data.  

 



Hull-White Model of Interest Rates 

Hull-White model is applied to risk-free bonds which price depends on the stochastic movement of the 

risk-free rates. The exposure to bond default risk is not considered either because the bond is issued by a 

highly-rated entity or because it is collateralized and can be assumed to be risk-free. The stochastic 

structure is modelled using a diffusion process of short-term interest rates. 

Hull-White model of interest rates <=� = ?�� − B=�@<� + )�<A� (R.1) 

Construction of tree approximation of the process 

Stage A: construct the discrete tree approximation for the following process <�� = −B��<� + )�<A� 

The process eliminates the drift parameter �� and models the process that is symmetric around �∗ = 0. 

The symmetric tree is modelled as a trinomial tree with the step 

∆� = )√3∆� (R.2) 

The tree region is divided in three separate regions: 

Tree interior: Symmetric tree branching 

The number of states in period � is �� = 2 × � + 1. The transition probability mapping is set using the 

following local function: 

�� ⇒ e�� + ∆�; ����; ���� − ∆�; �U  (R.3) 

The probabilities ?��, ��, �U@ are constructed from the following conditions: 

i. Expectation of the conditional transition probabilities: ��<�� = −B�∆� or, in the discrete form, ��∆� − �U∆� = −B��∆�; 

ii. Variance of the conditional transition probabilities: ��<�E� = �d=�<�� + �E�<�� = )E∆� +?B�∆�@E or, in the discrete form, ��?∆�@E + �U?∆�@E = )E∆� + ?B�∆�@E; 

iii. �� + �� + �U = 1; 

The system of equations for ?��, �U@ can be presented as  

�?�� − �U@ × ?∆�@E = −B��∆�∆�?�� + �U@ × ?∆�@E = )E∆� + ?B�∆�@E 

Note that 
∆�?∆�@n = ��pn, and therefore the system can be represented as 



��� − �U = − B��∆�3)E
�� + �U = 13 + ?B�@E × ∆�3)E

 

Solving the system, we obtain 

��� = 16 + B�6)E �B� × ∆� − ∆��
�U = 16 + B�6)E �B� × ∆� + ∆�� 

and  

�� = 1 − �� − �U = 23 − B�3)E × B� × ∆� 

In the case of the interest process with zero mean reversion (B = 0), the formulas are simplified to 

��� = �U = 16�� = 23  

The transition probabilities are described in this case by the following simplified formula: 

�� ⇒
\]̂
]_�� + )√3∆�; 16��; 23�� − )√3∆�; 16

 (R.4) 

 

Tree top boundary: Downward tree branching 

 

Tree bottom boundary: Upward tree branching 

 



Interest Rate Option Calculations 

Interest rate options are derivative contracts that depend on the state of the modelled stochastic interest 

rate (or, respectively, on the bond price). The options are estimated by modelling the value of the bond 

conditional on different actions. For example, in the case of put / call options the bond value is estimated 

as maximum / minimum price of the bond conditional on the selected option to exercise the option. The 

estimation process is performed using the following steps: 

1. Construct the tree model of the stochastic interest rates; 

2. Estimate the option-free bond price running backward recursion and default no-exercise action;  

3. Estimate the bond price in the presence of the option by maximizing / minimizing the price of the 

bond with respect to the set of actions; 

4. Calculate the value of the option as the difference of the bond price with and without the option; 

The list of standard interest rate options includes: 

i. Prepayment (call) option that gives the borrower the right (but not the obligation) to repay the 

bond principal and accrued interest at no penalty or make-whole provisions. The option is 

exercised so that to minimize the price of the bond to the borrower. The bond is exercised at low 

interest rates so that it is the benefit to the borrower to exercise the call option and refinance the 

debt obligations at lower interest rates; 

ii. Mandatory repayment (put) option that gives the lender the right (but not the obligation) to 

request the repayment of the bond principal and accrued interest at no penalty or make-whole 

provisions. The option is exercised so that to maximize the price of the bond to the lender. The 

bond is exercised at high interest rates so that it is the benefit to the lender to exercise the put 

option and reinvest the funds at higher interest rates; 

iii. Forward option that sets a given fixed (exercise) price of the bond at a given future date. The 

exercise price is typically set at the effective date so that the value of the future option is zero. 

The explicit value of the forward option can be calculated using Black formula (discussed in the 

examples below); 

iv. Interest deferral option that gives the right to the borrower to defer interest payments until a 

given date in the future. With increasing interest rates exercising the interest deferral optio 

presents a benefit to the borrower. 

The above options can be modelled under more complex conditions such as 

a. Presence of the penalty provisions that is often in the form of the non-par price schedule specified 

for the option. In the case of the call option, lots of agreements set the above-par (decreasing to 

par) price schedule at which the call option can be repaid; 

b. Presence of the make-whole provision that requires to repay the debt (for the call option) using 

a low discount rate (treasury rate plus a small spread). The option is exercised only in the event 

of very significant drop in the interest rates; 

c. Presence of the mandatory amortization provision that reduces the value of the call option since 

the call option is applied to smaller notional amount over time; 



Examples 

A call option is modelled as follows. 

1. Initial state: =f = �; the initial yield rate is set equal to the coupon rate. It is assumed that the call 

option is valued at the initial date when the bond is valued at par; 

2. Frequency of coupon payments: !. The parameter can take values ! = �1,2,4 ; 

3. Volatility: volatility ) is measured using historical short-term yield data. Under the assumption of 

the Hull-White model described above and zero mean-reversion parameter, the interest rate 

process is described as <=� = �<� + )<A� so that parameter ) can be estimated based on the 

standard deviation of the daily <=� series which is normalized then by the number of business 

days in the years (multiplied by √250 where it is assumed that a regular year has 250 business 

days). As a more accurate measure, the parameter ) can be estimated based on the standard 

deviation of 
Ul/*U�/ sample where <�$ = # ¢2 U�£� ���¤��" �¤¢ ��l$¢U�# ¢2 U�£� $" �¥� £��l . The number of days in the year 

is generally set by default to 365 or 365.25 (to take into account the leap years); 

4. Number of periods: � = 4 × �£l  where �£l is the maturity of the bond in years. Each step of the 

tree corresponds to a three-months period; 

5. Set of actions: ¦ = �0,1  where element d = 0 corresponds to no-exercise and d = 1 to exercise 

action. 

6. Set of states: § = �=f − ¨∆�, =f + ¨∆�, ¨ = 0, … , �  & �=∗  where =∗ is the exercise set which is 

selected outside (typically above) the regular states of the interest rate tree. 

7. Discount rate: the local discount rate is estimated as ª�?«@ = e �?��l3@5{ ¨! =� ≠ =∗
0 ¨! =� = =∗ .  

8. Terminal function: in the absence of the call option, !�?«@ = 100 × |1 + 2~. In the presence of 

the call option, !�?«@ = 100; 

9. Objective function: ®�?«@ = � �� ¨! =� ≠ =∗
�̄?«@ ¨! =� = =∗ , where �� is the coupon payment in period � and 

�̄ is a given cost of exercising the call option in period � and state «. 



DerivaGem Tool 

DerivaGem (current version 2.01) is a freeware implemented as an excel file to calculate the interest rate 

options including call / put options. The official website for the tool is http://www-

2.rotman.utoronto.ca/~hull/software/. The screen for the bond option pricing is displayed below. The 

following parameters are set to estimate the call / put option price: 

1. Principal amount (value of the call option is calculated relative to the principal amount. Therefore, 

if the principal amount is set equal to 100, then the call option is calculated as a percentage of the 

principal amount); 

2. Maturity term of the bond (in years); 

3. Coupon rate is set equal to the bond coupon rate; 

4. Strike price (redemption price of the bond). The strike price is set equal to the principal amount 

if there is no penalty for the option prepayment. DerivaGem tool can model only constant penalty 

over time. If penalty is «%, then the strike price is set at ° = 100 × ?1 + «%@; 

5. Option life (in years). Option life typically equals to the maturity term of the bond minus notice 

period of the option minus one day; 

6. Short-rate volatility of the market yields. The market yield rates are used to estimate the short-

rate discount factors used in bond valuation. The volatility is estimated based on historical 

behavior of the short-rate (3-months) yield series. The credit risk of the yield series is selected to 

match the credit rating of the reference bond to take into account the credit risk exposure in the 

option transaction (if the bond defaults, then the payouts in the options are set to zero). 

Alternatively, the volatility can be estimated using treasury rates (assuming that valuation is 

performed using treasury rates) but the default state of the bond and the varying probability of 

default must be modeled explicitly. For Hull-White (extended Vasicek) model volatility is 

estimated as )b = √250 × N�<,� �<=��; 

7. Mean-reversion rate. The default mean-reversion rate was assumed to be equal to zero; 

8. Tree steps. Generally is set to four times the maturity term. Factor four corresponds to a 3-month 

length of each discrete time period in the interest rate tree; 

9. Term structure.  Each model of the short-rate (Hull-White extended Vasicek or extended CIR) 

produces a term-structure specific to the model. For example, the term structure for the Hull-

White extended Vasicek model, assuming zero mean-reversion rate, is equal to �� = =f + �E (� −�o )E�E. The term structure must be set in the corresponding cells. To estimate the term structure, 

the drift parameter ( and the initial value =f must be set. The drift parameter ( effectively 

determines the slope of the term structure. The parameter is calibrated from the term structure 

estimated as of the valuation date: ( = E� ?�� − =f@ + �� )E�. Parameter =f is set to match the 

bond price to the quoted bond price as discussed below; 

10. Quoted Bond Price. If the valuation is performed as of the bond issue date, the quoted bond price 

is generally set to par (100) value. The par value must be consistent with the term structure 

parameters of the model. We calibrate the parameter =f so that the quoted bond price equals to 

bond par value.  

11. Frequency of the coupon payments is set to semi-annual to match the coupon frequency of 

standard USD bonds. Generally the parameter must match the frequency of the bond coupon 

payments; 



12. The interest rate model is set to “Normal – American”. The model is described by equations  

(3.1) – (3.4). 

 

DerivaGem Tool: Comments 

Applicability of the DerivaGem tool depends on the following implicit assumptions: 

i. In the Hull-White extended Vasicek model market yield rates can move into the region of negative 

values. Under the assumptions above, the market yield rates are symmetric with respect to the 

initial yield rate and are not bounded from above or below. Symmetric tree branching is applied 

in each period and at each state; 

ii. The valuation tool does not take into account the default probability on the bond obligations; 

DerivaGem: Example 

Let’s consider the following example. The call option is priced using the following parameters. 

1. Principal and strike price are set to 100; 

2. Bond maturity term and option life are set to 2.5 years; the number of tree steps is set to 2.5 

4 � 10 (10 tree steps is the maximum number of tree steps that can be displayed by the tool); 

3. Coupon rate is set equal to the yield rate and is set to 3%; 

4. Volatility is set to 0.5% (historical volatility rate estimated for the interest rate model described 

by equation (3.1) typically ranges between 0.1% and 1.0%); mean-reversion rate is set to zero; 

5. Coupon frequency is set to semi-annual and the model is set to “Normal – American”; 

Under the parameters, the market yield rate in the last period ranged between -1.32% and 7.34% 

(approximately 4.33% deviation from the initial 3% yield rate). The call option price in period � = 0 was 

estimated at ¯f = 1.7759; The call option in the last period was estimated equal to the coupon payment: ¯� = 0.5  3% � 1.5%. 

The example was replicated as the following optimization problem on the stochastic interest rate tree. 



1. Discount rate function: ª�?«@ = e �?��l3@5{ ¨! =� ≠ =∗
0 ¨! =� = =∗; 

2. Terminal function: !�?«@ = ³100% × |1 + �%E ~ ¨! =� ≠ =∗100% ¨! =� = =∗; 

3. Objective function: ®�?«@ = ´ 0 ¨! =� ≠ =∗ d�< � ¨N µ<<
�%

E
¨! =� ≠ =∗ d�< � ¨N ,�,� (d�< �µN¨�¨�,)

100% ¨! =� = =∗

; 

Note that even positive values of � correspond to coupon payment dates. The state =∗ was set at =∗ =100%. 

The borrower exercises the option at low market yield rates when the price of the bond is above the par 

and therefore exceeds the value of exercising the call option. From the borrower’s perspective the optimal 

action to exercise the call option is selected to minimize the price of the bond. Therefore, the optimization 

problem is solved with the terminal and objective functions set with negative signs.  

 


