Overview

The objective of the application is to identify the parametric distribution (from a given list of standard distributions) that produces the best match for the underlying sample data. The sample data is assumed to be stationary.

Implementation

The application is designed as follows.

- 1. **Inputs**. The input data is a $k \times n$ matrix X that represents k estimated samples (where each sample size equals n). The analysis is performed separately for each individual sample;
- 2. **Calculator**. The distribution estimation is performed by implementing the steps below.
	- a. For each sample from the list of k samples and each distribution from the list of standard distributions, estimate the parameters of the distribution;
	- b. For each sample and each estimated parametric distribution, construct Kolmogorov-Smirnov and chi-squared statistics (and corresponding p-values), which is used to test the sample distribution. The Kolmogorov-Smirnov and chi—squared test details and related statistics estimation details are described below.
	- c. Identify the distribution with the smallest chi-squared statistics and match it to the related sample.
	- d. Estimate the histogram for each sample and compare it to the matched distribution.
- 3. **Output**. The output is represented by the following objects.
	- a. List of k **histogram** objects constructed for each of k samples.
	- b. Table of Kolmogorov-Smirnov and chi-squared **statistics** and **p-values** constructed for each sample and each standard distribution. The distribution with the highest p-value is matched to the related sample.
	- c. The list of **distributions** matched to each related sample based on the estimated p-values.
	- d. The table with the **distribution parameters** estimated for each sample and each standard distribution.

List of standard distributions

- 1. **Normal** distribution $N(\mu, \sigma)$ where μ is the mean and σ is the standard deviation of the distribution;
- 2. Log-Normal distribution $ln N(\mu, \sigma)$ where μ is the mean and σ is the standard deviation of the natural logarithm of the distribution. The log-normal distribution has support $\{x > 0\}$ so that the logarithm of the values is distributed normally with parameters μ and σ ;
- 3. **Beta** distribution: $p(x) = \frac{x^{a-1} \times (1-x)^{\beta-1}}{B(a,\beta)}$ $\frac{x(1-x)^{p-1}}{B(a,\beta)}$; where $B(a,\beta) = \frac{\Gamma(a)\Gamma(\beta)}{\Gamma(a+\beta)}$. The support of the distribution is $x \in [0,1]$.

4. **Cauchy** distribution:
$$
p(x) = \frac{1}{\pi \gamma \left(1 + \frac{(x - x_0)^2}{\gamma}\right)}
$$
;

- 5. **Chi-squared** distribution: $p(x) = \frac{x^{\frac{k}{2}-1} \times e^{-\frac{x^2}{2}}}{\frac{k}{2}}$ $2^{\frac{k}{2}} \times \Gamma(\frac{k}{2})$;
- 6. **Exponential** distribution: $p(x) = \lambda e^{-\lambda x}$;
- 7. **F** (Fisher-Snedecor) distriution: $p(x) = \frac{1}{\sin \theta}$ $\frac{1}{x \times B\left(\frac{d_1}{2},\frac{d_2}{2}\right)} \times \sqrt{\frac{(d_1 x)^{d_1} \times d_2^{d_2}}{(d_1 x + d_2)^{d_1 + d_2}}}$ $\frac{(u_1x)^{n_1} \times u_2}{(d_1x + d_2)^{d_1 + d_2}}$
- 8. **Gamma** distribution: $p(x) = \frac{1}{\Gamma(x)}$ $\frac{1}{\Gamma(a)} \times \beta^a \times x^{a-1} e^{-\beta x};$
- 9. **Geometric** distribution: $p(k) = p \times (1-p)^k$;
- 10. **Laplace** distribution: $p(x) = \frac{1}{2l}$ $\frac{1}{2b} \times e^{-\frac{|x-\mu|}{b}};$
- 11. **Logistic** distribution: $p(x) = \frac{q(x)}{q(x)q(x)}$ $\frac{q(x)}{sx(1+q(x))^{2}}$, where $q(x) = e^{-\frac{(x-\mu)}{s}};$
- 12. **Poisson** distribution: $p(k) = \frac{1}{k}$ $\frac{1}{k!} \times \lambda^k \times e^{-\lambda}$;
- 13. **T** (Student) distribution: $p(x) =$ $\Gamma\left(\frac{1+\nu}{2}\right)$ $\frac{\Gamma(\frac{1}{2})}{\sqrt{\pi\nu}\times\Gamma(\frac{\nu}{2})}\times\left(1+\frac{x^2}{\nu}\right)$ 2 $\frac{1}{\nu}$ $1+\nu$ 2 ;
- 14. **Triangular** distribution: $p(x) = \frac{2 \times (x-a)}{D}$ for $a \le x < c$ and $p(x) = \frac{2 \times (b-x)}{D}$ for $c \le x \le b$, where $D = (b - a) \times (b - c);$
- 15. **Uniform** distribution: $p(x) = \frac{1}{b-x}$ $\frac{1}{b-a}$ for $a \leq x \leq b$;
- 16. **Weibull** distribution: $p(x) = \frac{k}{\lambda}$ $\frac{k}{\lambda} \times \left(\frac{x}{\lambda}\right)^{k-1} e^{-\left(\frac{x}{\lambda}\right)^k}, x \ge 0.$

Distribution parameters

- 1. **Normal:** $\mu = E[x]$, $\sigma = stdev[x]$;
- 2. **Log-Normal**: $\mu = E[\ln x], \sigma = stdev[\ln x]$;

3. Beta:
$$
\frac{\alpha}{\alpha+\beta}
$$
 = E[x]; $\frac{\alpha-1}{\alpha+\beta-2}$ = Mode; $\Rightarrow \alpha = \max \left[0, \frac{1-2 \times Mode}{1-\frac{Mode}{\mu}}\right]$; $\beta = \max \left[0, \alpha \times \left(\frac{1}{\mu} - 1\right)\right]$

- 4. **Cauchy**: $x_0 = Median (= Mode)$; $x_0 + \gamma \times \tan \left[\pi \times \left(F \frac{1}{2} \right) \right] = quantile$;
- 5. **Chi-square**: $k = \max[0, E[x]]$;
- 6. **Exponential**: $\lambda = \max\left[0, \frac{1}{E[x]}\right]$;

7. **F**:
$$
\frac{df_1}{df_1 - 2} = E[x]; \frac{df_2 - 2}{df_2} \times \frac{df_1}{df_1 + 2} = Mode[x]; \Rightarrow
$$

$$
df_1 = \max\left[1, \frac{2 \times E[x]}{E[x] - 1}\right]; df_2 = \max\left[1, \frac{2}{1 - Mode[x] \times \frac{df_1 + 2}{df_1}}\right];
$$

- 8. **Gamma**: $\frac{\alpha}{\alpha}$ $\frac{\alpha}{\beta} = E[x]; \frac{\alpha}{\beta^2} = var[x]; \Rightarrow \beta = \frac{\max[0, E[x]]}{var[x]}; \alpha = \frac{E^2[x]}{var[x]}$ $\frac{E[\lambda]}{var[x]}$; 9. **Geometric**: $p = \min\left[1, \max\left[0, \frac{1}{E[x]}\right]\right]$; 10. **Laplace**: $\mu = E[x]$; $2b^2 = var[x]$; $\Rightarrow b = \frac{stdev[x]}{\sqrt{2}}$; 11. **Logistic**: $\mu = E[x]$; $\frac{s^2 \pi^2}{3}$ $\frac{\pi^2}{3}$ = $var[x]$; \Rightarrow $s = \sqrt{3} \times \frac{stdev[x]}{\pi}$ $rac{\epsilon \nu[\lambda]}{\pi}$; 12. **Poisson**: $\lambda = \max[0, E[x]];$ 13. **T** (Student): $\frac{v}{v-2} = var[x]; \Rightarrow v = max\left[1,2 \times \frac{var[x]}{var[x]-1}\right];$ 14. **Triangular**: $a = \min x$; $b = \max x$; $\frac{a+b+c}{3}$ $\frac{b+c}{3} = E[x]; \Rightarrow c = 3 \times E[x] - a - b;$ 15. **Uniform**: $a = \min x$; $b = \max x$;
- 16. **Weibull**: $\lambda \times \Gamma\left(1 + \frac{1}{k}\right) = E[x]$; $\lambda \times (\ln 2)$ $\frac{1}{k}$ = $Mode[x]$, where λ is scale parameter and k is shape parameter.

Application of different distributions

Testing for the distribution

Histogram estimation