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List of Abbreviations

The following abbreviations and symbols are used in this guide:

ac.finance.SRM

ARN
Bloomberg
bps

CBOE

CIR
DerivaGem
EWMA
GARCH
GARP

HP filter
HW
Moody’s

OECD Guidelines

Reuters
SA
SRM
SRVIX

Java/Excel — based interest rate option valuation tool developed as part of this
guide

Adjustable rate note

Bloomberg Professional Service

Basis points

Chicago Board Options Exchange
Cox-Ingersoll-Ross

Hull-White interest rate option valuation tool
Exponentially weighted moving average
Generalized auto-regressive conditional heteroskedasticity
Global association of risk professionals
Hodrick-Prescott filter

Hull-White

Moody's Investors Services, Inc.

“BEPS Actions 8 — 10, Financial Transactions”, a draft published in July —
September 2018 for the purposes of public discussion

Reuters news agency, a subsidiary of Thomson Reuters Corp.
Semi-annual
Short rate model

Swap Rate Volatility Index



Section 1 Introduction

The notes summarize the approaches applied to valuation interest rate options including (i) prepayment
(call) option and (ii) pay-on-demand (put) option.

A prepayment option is a standard term in a bond transaction. In a typical bond sample more than half of
the bonds are often callable bonds.* Presence of a put option is a much less typical term of a bond
transaction. However, putable bonds are also periodically observed in a sample of bond transactions.

In an intercompany loan transaction, the prepayment (or pay-on-demand) option is typically included for
two reasons:

1. The call option is included to maximize the interest rate on the loan, which is consistent with the
market interest rates. (In the case of a pay-on-demand option the presence of a put option
decreases the interest rate on the loan);

2. The parent group of the borrower wants to have an option to unwind the debt structure if deemed
necessary. Presence of the call (put) option provides such an option for the parent group.

Presence of the call (put) option may result in a transfer pricing risk that the borrower may have an incentive
to refinance the loan at some time in the future. Therefore, the interest rates need to be monitored on a
regular basis to ensure that the borrower does not have an incentive to exercise the call option. An example
of debt refinancing is provided in Appendix F.4. Presence of a penalty structure in a prepayment option
partially mitigates the risk.

The objective of the interest rate option pricing tool, which is developed as a part of this guide, is to (i) adjust
the yield rates on comparable callable (putable) bonds and to (ii) estimate the prepayment (pay-on-demand)
premium (discount) for the tested transaction.

1.1 Interest rate options

Bond agreements often include different options such as an option for the borrower to repay the bond early
prior to the bond maturity date or the option for the lender to demand and early bond repayment. Early bond
repayment allows the borrower to take advantage of lower market interest rate and refinance the bond at
lower cost. Similarly, a pay-on-demand option allows the lender to take advantage of high market interest
rates and reinvest the funds in a higher yield instruments with the same credit risk.

To exercise the prepayment (pay-on-demand) option, the borrower (lender) is typically required to provide
a notice period to the counterparty prior to exercising the option. Exercising the option may involve a penalty
either in the form of a make-whole provision or a premium, which generally depends on the remaining
maturity term of the bond.

The primary risk that is modelled to evaluate the option value is the market interest rate risk. Decrease in
market interest rates increases the chances of the bond prepayment. Similarly increase in market in interest
rates increases the chances that the lender will demand the bond prepayment. In practice pay-on-demand
option is rarely included in the bond agreement and when included the option can be typically exercised in

! Bloomberg typically classifies a callable bond with the make-whole provision that is effective until the bond maturity date as a bullet
bond. We also treat these bonds as effectively non-callable bonds. Many callable bonds also have make-whole termination date which
is a few months prior to the bond maturity dates. These bonds are also treated as effectively non-callable.
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a few discrete dates, where the first exercise date is set at least five years after the bond issue date. The
prepayment option is a much more typical feature of a bond agreement. However, in most cases the
prepayment option has a penalty structure in the form of both make-whole provision and prepayment
premium penalty structure. A typical penalty structure is described in the Appendix B.

Valuation of interest rate options involves the following steps:

» Model a stochastic process of interest rates. The process is typically described by an interest rate
tree and the probability distribution of the interest rates over the tree states;

» Estimate the borrower (lender) prepayment (pay-on-demand) decision, which specifies in which
interest rate tree state the prepayment (pay-on-demand) is exercised. The option is exercised
whenever the value of exercising the option (which takes into account the option penalty structure)
exceeds the value of keeping the bond;

» Estimate the value of the prepayment (pay-on-demand) option as the difference between the value
of the bond with the option and the value of the bullet (option-free) bond.

Multiple factors may affect the stochastic changes in the market interest rates. For example, a Nelson-
Seidel modelling approach? describes interest rate process as a three-factor model, where the three factors
(level, slope, and curvature) represent the geometric shape of the interest rate term structure. Interest rate
options are typically modelled using one-factor models. The models use one-factor process to describe
short-term interest rates. The interest rates with other maturity terms are derived analytically from the one-
factor short-term rates. Under the approach, the movements in the interest rates with different maturity
terms are affected by a single stochastic factor and therefore the movements are strongly correlated.

A special case of the one-factor interest rate models are interest rate models with affine term structure. The
interest rates have affine term structure whenever the prices of zero-coupon bonds are described by the
following equation

Pr = A(t, T) x e”BEDxT

where A(t,T) and B(t,T) are some arbitrary functions. The respective interest rate term structure is described by the
following equation

Rt = _lnPT = _lnA(t,T)+r0 XB(t,T)

Under the affine term structure modelling approach, the interest rates with arbitrary maturity term T are a
linear function of the short-term interest rates r,. The analytical solution of the interest rate term structure allows
(i) to derive model parameters and (ii) to validate the results of the interest rate option valuation analysis. The details
of model parameter estimation and model output validation are provided in the sections below.

This guide describes four alternative affine term structure models. Two parametric models include Vasicek model and
Cox-Ingersoll-Ross (CIR) model. The parametric models are described by three numeric parameters: drift, volatility,
and mean-reversion. Two non-parametric models include Hull-White (extended Vasicek) and Hull-White (extended
CIR) models. The volatility and mean-reversion parameters in the non-parametric models are still assumed to be
numeric. The drift parameter in the non-parametric models are assumed to be functions of maturity term t.

2 The approach is described in more detail in a separate “Interest Rate Benchmarking” guide.
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1.2 Terminology

The following terminology is used throughout these notes.

» Bullet bond. A bullet bond is a bond where a payment of the entire principal of the bond, and
sometimes the principal and interest, is due at the bond maturity term. Effectively a bullet bond is
a bond with no prepayment and pay-on-demand options.

» Call option. An early prepayment option providing a borrower with a right to prepay outstanding
principal and accrued interest amounts.

» Put option. A pay-on-demand option allowing a lender to demand an early repayment of
outstanding principal and accrued interest prior to a maturity date.

» Make-whole provision. Under a make whole clause the borrower has to value the cash flows
beyond the date of the bond early call/redemption date. The valuation is performed using a low
discount rate (for example, the discount rate is estimated as the yield on government bond plus a
small spread). The estimated bond full value (which includes future bond cash flows) is
compensated to the lender if the call option is exercised. The purpose of the make-whole provision
is to provide a strong form of protection for lenders/investors in securities, designed to mitigate the
adverse effects of call risk for investors. The consequence of a make whole clause for the investor
is that they can re-invest the redemption monies in government stock, thus preserving their
originally expected cash inflows at lower risk.

Potentially it makes prohibitively expensive for the borrower to take an early redemption under the
make-whole termination provision. In practice the make-whole provision often has a termination
date. If the make-whole termination date matches the maturity date, then Bloomberg typically refers
to the bond as a bullet bond. In this guide we assume that exercising the call option has an infinite
cost prior to the make-whole termination date (so that the call option is never exercised prior to the
make-whole termination date) and the prepayment penalty is determined by the bond penalty
structure after the make-whole termination date.

» Notice period. The notice period is the time period between the receipt of the notice that the option
will be exercised and the actual option exercise date. It is assumed in this guide that the notice
provided by the borrower is a commitment that the option will be exercised at the end of the notice
period.

» Soft call. Soft call protection requires the payment of a premium to the investor, on any early
redemption of a callable bond by the borrower. At early redemption the premium becomes payable,
together with principal and outstanding interest at the call/redemption date.

Soft call is an alternative to the make-whole provision (hard call). Soft call is a weak form of
protection for lenders/investors in securities, designed to mitigate the adverse effects of call risk for
investors. It sometimes applies only for an early part - for example just the first year - of the life of
a security (the security becoming freely callable after that initial period of soft call protection).

» Arbitrage-free interest rate models are the models (such as Hull-White extended Vasicek and
extended CIR models), in which the term structure of yield rates is matched exactly.

1.3 Valuation summary

The notes summarize the steps performed in a selection and option estimation for a specific family of
interest rate models. The discussion is provided for Hull-White (extended Vasicek) and Hull-White
(extended CIR) models (however the list can be extended if necessary). The steps are summarized below
and are described in the following sections.
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1. Select the family of interest rate models
» Vasicek;
» Hull-White (extended Vasicek) ;
» Cox-Ingersoll-Ross (CIR);
» Hull-White (extended CIR);

2. Estimate parameters of the model. Each of the above two families depends on the following three
parameters: (i) volatility; (ii) drift; (ii) mean reversions, and (iv) coupon value. Parameters are
currently assumed to be estimated as follows:

» Volatility is estimated based on a historical sample of short-term rates;

» Drift is estimated based on the latest term structure of yield rates;

» Mean-reversion parameter is assumed to be zero.

» Coupon rate value is calibrated so that the bond bullet value is equal to par.

3. Review the adjusted parameters and adjust manually if necessary. For the parametric models all
three parameters (drift, volatility, and mean-reversion) can be manually overridden. For the non-
parametric models only numeric parameters (volatility and mean-reversion) can be manually
overridden.

4. Estimate interest rate options.
5. Validate the results of option estimation analysis.

» Derive the formulas of zero-coupon prices and respective yield term structure. Zero-coupon
prices are used as proxies for the discount factors in option calculation. Yield term structure is
used to derive the drift parameter in the step above. Zero coupon prices are also used to derive
theoretical bond price and compare it against the estimated numerical bond prices;

» Derive the formulas for the terminal interest rate distribution parameters. The parameters are
used in the test against the calculated numerical distribution parameters.

» Derive the formulas for the implied model parameters based on the estimated terminal
distribution parameters. Compare the implied model parameters with the actual parameters to
assess how material is the error produced by the model discrete approximation implementation.

» Validate the results directly using DerivaGem as an alternative option valuation tool.

Konstantin Rybakov Interest Rate Options Page 10 of 89



Section 2 Interest Rate Model Families

General form of interest rate process can be represented as follows:

(2.1) dry, = u(t, ) xdt + a(t,r) X dW,

where different models are summarized in the exhibit below. The Vasicek and CIR models are parametric
models described by three parameters: drift, volatility, and mean-reversion. For simplicity, the mean —
reversion parameter is assumed to be zero. The volatility parameter is estimated based on historical sample
of short-term rates. The drift parameter is estimated to approximate the term structure of the yield rates.

The guide describes four special types of the affine structure interest rate models. Vasicek and CIR models
are parametric models, which are described by drift, volatility, and mean-reversion parameters (denoted
respectively as 9, a, and o). Mean-reversion parameter is assumed to be zero. Volatility parameter is
estimated based on historical sample of short-term rates. Drift parameter is estimated so that to match
approximately the interest rate term structure.

2.1  Model specification

Alternative interest rate model specifications are summarized in the Exhibit 2.1 below.3

Exhibit 2.1  Summary of interest rate model specifications

Drift term Bl EComment

term

) Approximate matching of the term structure (using
Vasicek (1977)* He =0 — ar o constant slope parameter); unbounded interest rate;
constant interest rate volatility

Hull-White (extended Exact matching of the term structure (using constant slope
Vasicek, 1990)5 He =0 — ety ot parameter); unbounded interest rate; constant interest
' rate volatility

Cox — Ingersoll — Ross 1 Approximate matching of the term structure (using
(CIR, 1985) He =9 —ary o1 constant slope parameter); bounded interest rate (with

' zero); interest rate volatility increases with interest rates
Hull-White (extended 1 Exact matching of the term structure (using constant slope
CIR, 1990) Pe =0 — g1y o1y parameter); bounded interest rate (with zero); interest rate

volatility increases with interest rates

3 Other affine term structure model specifications have also been studied in the financial literature including the following models:
Dothan (1978), Rendleman — Bartter, Courtadon, Constant Elasticity of Variance (CEV), Marsh-Rosenfeld (1983), Exponential Vasicek
(EV), Black-Derman-Toy (1990), Black-Karazinski (1991), and other. However, these models are outside the scope of this guide.

4 The ¥ parameter in the Vasicek model is assumed to be of the form ¥ = ab, where b is the long-term steady state of the interest
rates. In this form the random walk model (« = 0) cannot be modelled as a special case of Vasicek model. We present the Vasicek
model in the format consistent with the Hull-White (extended Vasicek) format.

5 Hull-White describe formally the drift parameter in the model as follows: u, = 9, + a(b —r). We assume that b = 0 or equivalently
that the 9, term represents the 9, + ab term in the original Hull-White model. Parameters «, and o, in the Hull-White (extended
Vasicek) and Hull-White (extended CIR) models are assumed to be constant through these notes.
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The Hull-White (extended VasicekO and Hull-White (extended CIR) models are arbitrage-free models in
which the drift parameter 9(t) is a function of time t, estimated so that to match exactly the term structure
of the interest rates. The mean-reversion parameter is still assumed to be zero and the volatility parameter
is estimated based on historical sample of short-term yields.

The CIR model has the following advantages compared to the Vasicek model.

» Bounded interest rates. Zero interest rates do not have any specific significance in the Vasicek
model. The movement of interest rates is conceptually similar for positive and negative interest
rates. In the CIR model, the volatility of interest rates decreases to zero as the interest rates
approach zero bound. Under certain conditions, the interest rates never cross the zero bound in
the CIR model.

» Heteroscedastic volatility of interest rates. The volatility of interest rates in the Vasicek model does
not depend on the interest rates level. The interest rate volatility in the high interest rate markets is
the same as the volatility in the low interest rate markets. This is typically not consistent with the
actual observed markets interest rate behavior.

2.2  Zero-coupon bond prices
The equations for zero-coupon bond prices are used to (i) calibrate the parameters of the interest rate
model and to (ii) validate the results of the model numerical estimation. The bullet bond prices, described

by the equation (assuming t = 0. For arbitrary t, the yield rate r, is replaced with r, and tenor T is replaced
with T — t).

(22) PT =AX e—BTo
or, equivalently,
(2.3) InP; = —Br X715+ 1nAp

and respective interest rate term structures are summarized in the exhibits below. The formulas are derived
in the Appendix A.

Exhibit 2.2  Summary of zero-coupon bond prices

Zero-coupon bond bullet price

1— —a(T-t) 2 P 2p2
Vasicek (1977) - ~[(8-20-55 )K=
a
. —a(T—t
Hull-White (extended 1—e @@ @ -AolxBxds—Lpxr-t-B)+ S|
Vasicek, 1990) . e 2
29
2x (e¥T-0 1 (y+a+1o)(T-t)/2 oz
CIR (1985) ( T ) 2re ’
(y + a + A0) X (e -1 +2y (o +a+10) x (erT9D —1) + 2y
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Model name Zero-coupon bond bullet price

‘ : T-0) _
ull-White (extended 2% (e” 1) o= T 9xBGxds
CIR, 1990) y+a+ao) x(erTD—-1)+2y
where
(2.4) y=+(@+10)2+202 > 0V2+ A2 asa -0

and A is the market price of risk (with default value assumed to be 1 = 0).
Assuming a = 0, the equations can be simplified as follows

Exhibit 2.3  Summary of zero-coupon bond prices at a =0

Zero-coupon bond bullet price

—$+)2 2
Vasicek (1977) T—t o010 5 - L]
HuII_—White (extended T—¢ —[ftT[ﬁ(s)—/la]x(T—s)ds-%zx(r-tﬁ]
Vasicek, 1990) e

29

CIR (1985) 2x (70— 1) 2yer A0/ &

(v +20) x (e¥T=9 — 1) + 2y (y + A0) x (e?T- — 1) + 2y
Hull-White (extended 2% (er™D —1) Y P
CIR, 1990) (y + a+ A0) x (e¥T-1 — 1) + 2y

Respective term structure of the interest rates defined as®

In Py
2.5 R =—
(25) r=——

is described by the following equation:
(2.6) TRy = —InPr=—1InA(,T) + B T) X1y

We also use the following notation in this guide: A(T) = A(0,T) and B(T) = B(0, T).

8 The yield rate of a zero-coupon bond is defined as a value Ry such that P, = e TRr,
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2.3  Zero-coupon bond price approximations

The equations for zero-coupon bond prices are applied to calibrate parameters of the interest rate option
model. The calibration however cannot be described by explicit equations due to complex functional form
of the price equations.

To simplify parameter calibration, the mean-reversion parameter is set to zero, @ = 0. The model with @ =
0 typically produces robust interest rate option values and is a reasonable assumption in many cases. In
practice, the interest rate data supports zero mean reversion in the short-term and positive mean-reversion
in the longer-term. Therefore, as an alternative to the @ = 0 case, we derive in this section the approximate
equations for a — 0. In the next section we show how the price approximation can be applied to calibrate
the interest rate model parameters.

The approximate equations for zero-coupon bond prices with « - 0 are summarized in the Exhibit 2.4
below.

Exhibit 2.4  Summary of zero-coupon bond price approximations

Zero-coupon bond bullet price

) T — t)? T-t)2_ ,(T=t)* T-t)3 L (T—t)*
Vasicek (1977) 78910 (T-t)- LD ‘[((*9"1”)%‘”2%)“’“((*9‘“)%‘”2%)]

2 @

Hull-White (extended (T —1)?
. (T-t)—a
Vasicek, 1990)

CIR (1985)

Hull-White (extended
CIR, 1990)

where

(2.7) y~0+/2 + A2

T-p*

—+)2 —+)3
7 Expression B(t, T) is approximated as B(t,T) = (T — t) — a% +a? % +a3 o

—t— —t— —1)2? —)3 _n4
8Expression¥ WNM_QM+ 207

is approximated as follows A < 72

(T—t-B) (T—t-B) -

0 ' - i i - (T = 1)? - @02 | ;2
Expression (19 Ao m) X is approximated as follows (19 Ao Za) X— [ 7 X (T-1) ]+ [(19 Ag) X S totx

(T-t)3

—£)3 —_p4
_]_ax[(ﬁ_la)XMJrUzXM]
12 6 48

a

2p2 2p2 2 3
10 Expression % is approximated as follows % = :—a x (T — t)z] - [az X %] +ax [02 X é x (T — t)“]
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2.4 Term structure

The term structure is derived directly from the zero-coupon bond equations using the term structure
definition (2.5):

_ InpPp
T

=Bry—InA

The term structure equations for different interest rate models are summarized in the exhibit below.

Exhibit 2.5  Term structure equations

Term structure

reversion
TRy = BOO,T) X 1o + J 8(s)  B(s, T) x ds — 2 x (T — B(0,T)) + ﬂ,
a>0 - a(T )
where B(t,T) = ——
Vasicek
(1977)
TRy =T X 1o+ [] 9(S) X (T =) xds ==X T =T xrp + 92— —Z x 73,11
a=0

where B(t, T)~(T = t) = £ x (T = ) + & x (T — 1)?

2.5 Term structure approximation

* Formally, — 2><(T B(0,T)) + Z2OD% —;—;x(ngz—%sz3)+%x(T xTZ) =OXT - x TP = =T T3
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Section 3 Parameter Estimation

Parameter estimation is one of the key steps of option estimation. It is arguably a more complex task to
produce stable and intuitive estimates for option parameters compared to the option estimation step. The
objectives, approaches, and specific equations for option model parameters estimation are presented
below.

3.1 Overview

In this section, we overview the criteria which are taken into consideration to assess reasonability of the
estimated option model parameters. We present then a high-level overview of the approaches tat can
potentially be applied for parameter estimation. Sections 3.3 — 3.7 describe the default parameter estimation
methods applied in the option valuation tool. Appendix C provides an overview of alternative parameter
estimation approaches.

3.1.1 Objectives

The key objective is to produce parameter values which are intuitive and can be easily interpreted and
explained. Specifically, the following considerations are taken into account.

() Robustness of estimates to outliers. Daly data is potentially highly sensitive to inaccurate yield data
estimates, which can produce highly sensitive parameter estimates.

(i) Consistency with arbitrage pricing. Interest rate option models are based on arbitrage-free pricing
models of interest rates, in which the full interest rate term structure is derived analytically from the
short-term interest rate model. Therefore, a reasonably accurate matching of the theoretical and
empirical term structures is one of the objectives of the parameter estimation.

(i) Consistency with market fluctuations. Prepayment option values are expected to be high in the
periods of high markets volatility when interest rates increase sharply. It is expected that market
interest rates will return back to the equilibrium values and prepayment option will be in the money
and exercised.

(iv) Zero interest rate floor considerations. While there is some evidence that interest rates move below
zero floor, the evidence is very limited (observed only for government and inter-banking yield rates
denominated in European currencies) and interest rate movement below the zero-floor threshold is
relatively small. Therefore, zero floor constraint is a reasonable assumption for the interest rates.
The implication of the zero-floor assumption is that the call option values are expected to be low for
low interest rates (due to limited potential downside exposure of the interest rates).

(v) Mean-reversion modelling. Historically, interest rate models are described reasonably well with a
random walk models for the short-term horizon and mean-reversion process for the medium and
long-term horizons. Therefore, mean-reversion is a material factor for the interest rate option
models.

The consistency of the implemented interest rate option model with the criteria discussed above is
discussed in Appendix F.5.

3.1.2 Approaches

The section reviews three alternative approaches to parameter estimation.

» Regression analysis. The approach is based on the direct estimation of the interest rate
regression model
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(3.2) dr, = u(t,ry) xdt + a(t,r) X dW,

» Calibration approach. Under the alternative approach, all parameters of the interest rate model
are estimated so that to match market price data described by the equation

(3.2 InP; = TRy = —B(T) X 1y + In A(T)

» Mixed estimation approach. Under the mixed estimation approach, some parameters are
estimated based on historical data and equation (3.1) and other parameters are estimated so that
to match current market data and approximate equation (3.2). Specifically, the volatility and mean-
reversion parameters are estimated from the equation (3.1) and drift parameter is estimated from
the equation (3.2). This is the default approach in this guide.

The data used for parameter calibration is typically represented by bond prices with different maturities,
which equivalently is converted to the term structure of the bond yields. In both Hull-White extended Vasicek
and CIR model the function 9, can be selected so that to match exactly the term structure of the yield rates.
Therefore, the volatility and mean-reversion parameters need to be either calibrated using additional market
data or estimated based on historical data. The default parameter estimation approach applied in this guide
is to (i) assume constant volatility and mean-reversion parameters and estimate them based on historical
data and to (ii) assume either constant or time-varying drift parameter and calibrate the parameter to match
the yield term structure.

The interest rate models (such as Hull-White extended Vasicek and extended CIR models), in which the
term structure is matched exactly, are referred to as arbitrage-free models. Yield term structure is typically
estimated based on the Bloomberg or Reuters yield series with different maturity terms. Bloomberg reports
the yield series with the following maturity terms (in years): t; = {0.25,0.5,1,2,3,4,5,7,8,9,10, 15}. To match
the yield term structure, the drift function is assumed to be piecewise constant estimated for the set of
values {t;}.

The diagram with the piecewise-constant drift function is illustrated in the diagram below.

Exhibit 3.1 Piecewise-constant drift function

o i Piecewise- :
© /, H 1 1
= A P constant drift :
s | e
]

Vita

>
t; =0.25 t: Lisa 15 maturity, in years

The equation for the yield term structure
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TRy = B(T) x 1y — InA(T)

is used to calibrate the parameters of the interest rate process.

We assume in the sections below that the market price of risk is set to zero, A = 0 and the mean-reversion
parameter is set to zero, a = 0. Note that the process with zero mean-reversion does not converge to a

long-term equilibrium. Estimation of mean-reversion parameter is discussed in Appendix C.

3.2

As afirst step, a sample is selected which is used to estimate the model parameters. The short-term interest
rates are selected based on the short-term yield estimates!? with the industry sector and credit rating
matching the industry sector of the borrowing entity and credit rating of the tested transaction. The sample

Sample parameters

is selected using the following parameters.

1. Sample size.

2. Period for yield change estimation.

3. Probability threshold for the outlier elimination.

3.3

This section describes three alternative methods for volatility estimation adapted for each interest rate

model:

Volatility parameter

1. Constant variance estimation.

| 2

The advantage of the approach is that (i) it is easy to implement (estimation is based on simple
statistics); and (ii) it produces different variance estimates for different credit ratings (typically
higher variance for lower ratings capturing higher volatility of yield series with low credit ratings.

The potential problems with the approach is that (i) it can potentially be highly sensitive to
outliers; and (ii) the same weight is assigned to both recent and remote observations. High
market volatility observed a few months ago will still have a large impact on the volatility estimate
even though current market volatility may be low. The volatility estimates are often non-stable.

2. Variance based on market volatility index.

| 2

The advantage of the approach is that (i) it produces stable and reasonable estimates; (ii) high
/ low variance estimates match high / low market volatility; (iii) implied volatility estimated based
on swaption market price data is a preferred approach from the transfer pricing perspective; and
(iv) volatility index show consistent behavior over time and is estimated by a reputable source.

The key problem with the approach is that it assigns the same volatility to each credit rating. In
practice, the interest rate volatility index is likely implied from the option prices on US$
Treasuries. The volatility estimate also assumes Normal model of interest rates (Vasicek
model). Therefore, it is not applicable to CIR or other types model types.

3. Variance based on EWMA and GARCHY(1, 1) models.

12 Typically, 3-month yield series is selected for the estimation of the option model parameters.
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» The advantage of the approach is that (i) it assigns higher weight to recent volatility (and,
therefore, variance estimates move cyclically with the market volatility); and (ii) the volatility
estimate depends on the yield series credit rating.

» Potential problems with the approach is that (i) it is more difficult to estimate (it's based on 15t —
order auto-regression model); and (ii) the results can potentially be sensitive to outliers (check).

The default approach is to estimate sample volatility using annual deviations in the yield rates. Alternative
approaches are discussed in Appendix C.1. The default approach was selected for the following reasons:

(vi) The estimator is robust with respect to the outliers.

(vii) The estimator captures period of high volatility and high interest rates through higher volatility
parameter (check EWMA again as a default option).

3.3.1 Constant variance

Under the ‘constant variance’ approach, the variance is estimated as the following sample statistics.

(3.3) o, = 0 = K X stdev [u;]

where k is the normalization parameter applied to produce an annual standard deviation parameter.
Specifically, if u, is estimated using annual changes in the data, then k = 1. If u; is estimated using daily
changes in the data, then x = v250 (assuming there are 250 business days in the year). In general,
parameter k is estimated using the following equation:

(3.4) = |22

where 7 is the number of business days between consecutive yield data observations applied to estimate
the changes in the residuals.

Parameter 7 is selected based on the following considerations: (i) presence of outliers in the sample; and
(ii) period over which volatility is estimated. The larger is parameter t, the lower is the impact of outliers on
the results and the longer is the period over which the volatility is estimated.

3.3.2 Vasicek and Hull-White (extended Vasicek)

Sample volatility is estimated based on the following short rate representation.

dry = (9, —ary) X dt + g x dW,

The annual volatility o is estimated based on annual deviations of the yield rates by applying the following
equation (assuming zero mean-reversion, a = 0, and constant drift, 9, = 0):
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t t
(3.5) & = az AW, x \dt = Z (dr, — 0dt) = 1, — Ty_yso — 0
t—250

t—250

where 250 is the proxy for the number of business days in a year. The volatility parameter ¢ is estimated
as a sample standard deviation of the sample constructed using equation (3.5).%2

3.3.3 CIR and Hull-White (extended CIR)
Sample volatility is estimated based on the following short rate representation.
dry = (ﬁt—art)xdt+o'x\/7txth

The annual volatility ¢ is estimated based on annual deviations of the yield rates by applying the following
equation (assuming zero mean-reversion, a = 0, and constant drift, 9, = 0):

t ¢ dr, — 6dt
(3.6) & = O'Z dW, x Vdt = Z -t
t-250 t-250 \/E

The volatility parameter ¢ is estimated as a sample standard deviation of the sample constructed using
equation (3.6). For simplicity, parameter 6 is set to zero in the above equation.

3.4  Drift parameter

Drift parameter is estimated to match approximately (in Vasicek and CIR) or exactly (in Hull-White extended
Vasicek or Hull-White extended CIR) the term structure of the yield rates. The estimation approach was
selected as the default approach to produce consistency between the option valuation and the term
premium. Importance of consistency for put options from the arbitrage pricing perspective is illustrated in
Appendix G.4.1.2. A similar argument can be applied for the call options. An increasing term structure
implies that in the initial periods of the option life the interest rates are below the coupon rate (which includes
the term premium component). Therefore, the increasing term structure can be viewed as an effective
barrier to exercise the call option early and the barrier reduces the value of the call option. The steeper is
the barrier, the larger is the negative impact on the call option value.*

The equations for the Vasicek and CIR model are presented below. The equations for Hull-White (extended
Vasicek) and Hull-White (extended CIR) models are presented in Appendix C.2.

3.4.1 Vasicek model

The interest rate term structure is described by the following equation

T 02 UZB(T)Z
TRy = B(T) ><r0+f 9(s) X B(s,T) X ds = 5— % (T - B(T)) e

_,—aT .
where B(T) = ”T The equation can also be represented as follows.

13 parameter 6 does not have an impact on the standard deviation and for simplicity is set to zero.

14 As illustrated in Appendix G.4.1.2, the impact on the put option is the opposite. The larger is the term structure, the higher is the
incentive to exercise the put option early and get the benefit of the term premium. Therefore, the higher is the term premium, the larger
is the positive impact on the put option value.
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fT o? 02B(T)?
9(s) X B(s,T) X ds = TRy — 1y x B(T) + == X (T = B(T)) = ———=G(T)
0 2a 4a
where
2 ZB(T)Z
(3.7 G(T) = [TR; — B(T) x 1] +%x (T—B(T))—GT

As a — 0, the function G(T) converges to the following functions

2T3
(3.8) G(T,a—->0)=TR;—1y) +

If the drift parameter 9 is constant, then equations (3.8) and (C.10) are estimated for the maturity term
t;+1 = T only (¢t; = 0) and the drift parameter is described by the following equations.

3.9 9= 6
(3.9) T 2B
fora > 0 and

L6 _ (Rp=m0) o’

3.10 <
(3.10) 9 T 7 3

fora = 0.

Equation (3.10) can also be validated by estimating parameter 9 directly from the Vasicek zero-coupon
bond price equation described in the Exhibit 2.2.°

3.4.2 CIR model

The interest rate term structure is described by the following equation

TRy = B(T) xrg +f 9(s) X B(s) x ds
0

YT_ . . .
where B(T) = M. Similar to the Vasicek model, the equation can be represented as
(y+a)x(e?T-1)+2y
T
f 9(s) X B(s) xds = G(T)
0

o282

2
16 _ _ %\ _ (T-B) | o?B? _ ITRr=BMxrolt i (T-B)~"~ (1)
TRT_—1nA(T)+B(T)><r0_(ﬁ—;)x7+7+3(r)xroorﬁ—a i <=0
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where

(3.11) G(T) = TRy — B(T) x 1,

As before, suppose that t, = 0,ty,...,tn_1,t, =T are discrete periods with observed market yield rates R; and
respective values of the function G(T) equal to G;.

In the case of constant parameter 9(t) = 9, parameters t; and t;,, are setto t; = 0 and t;,, + T. The equations
(3.11) and (C.11) can be represented then as follows

p-a TRy — B(T) x 1,
(3.12) s X T X T+ Zx [ ) x e + (=] —In2y)
and
2 —
(3.13) 9=""x TRy — B{T) x o

2 —yT+2x(In[e?T +1] —1In2)

Equation (3.13) can also be validated by estimating parameter 9 directly from the CIR zero-coupon bond
price equation described in the Exhibit 2.2.%

3.5 Mean-reversion parameter

There are currently two default approaches to set the mean-reversion parameter

(i) Calibrate the mean-reversion parameter to match a long-term equilibrium yield rate.
(i) Estimate mean-reversion parameter based on Hodrick-Prescott (HP) filter model.

(i) Set mean-reversion parameter to zero, which corresponds to the random walk model of the yield
rates. Note that random walk model is non-stationary and does not have a long-term equilibrium.

The two approaches are discussed below. Oher approaches are discussed in Appendix C.3.

3.5.1 Mean-reversion parameter calibrated to long-term equilibrium

Under the approach, mean-reversion parameter is estimated from the following equation, which relates
mean-reversion parameter to the interest rate long-term equilibrium value.

(3.14) r* =

Note that under the approach, the estimation of the mean-reversion parameter is effectively reduced to
estimation of the interest rate long-term equilibrium value. The long-term equilibrium can be estimated for
example using x-year moving average of the interest rates.

(y+a)T/2 2 TRy —B(T) X7 y2-a?
VTR, = —InA(M) + BT X1y = -2 xIn—2 4 B(T)xr,0rd =2x T o =r=
T <) (1) x7o o2 (+a)x(e¥T-1)+2y (M) x7o 2 7 In[(r+a)x(e?T-1)+2y)-In 2y~ LT 2

X

TRp—B(T)xro
—(y+a)T+2x[In(y+a)eYT+(y—-a)-In2y]
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3.5.2 Mean-reversion parameter based on Hodrick-Prescott filter model

The mean reversion parameter is estimated based on the following equation

(3.15) dri =aXx (f, —r) X dt + a(ry) X dW;

where 7 is interpreted as the long-term trend component and a is the mean reversion parameter.'® The
equation is using HP filter as follows.

() Estimate long-term and cyclical component of the yield series, denoted respectively as 7, and &7 =

7y — 1%.

(i) Estimate linear regression dr, = a X &7 X dt + o(r;) X dW,. The estimate of the a parameter in
the linear regression equation is the model mean-reversion parameter.

(i) Estimate volatility parameter o(r;) based on the residuals of the linear regression model.

The time-varying long-term trend #; in the interest rate model is replaced with a constant equilibrium value
r*. There are three alternative approaches to select the r* parameter:

(i) Setr* equal to the most recent long-term trend parameter 7,
(i) Setr*= g, where drift parameter 6 is estimated as discussed in the previous section.

(i) Setr* based on expert judgement (for example, set it equal to the long-term average interest rate)

Note that estimation of the long-term equilibrium is effectively equivalent to the estimation of drift parameter,
which are related through the equation (3.14).1°

3.5.3 Random walk model

Under the random walk model of the interest rates, the mean-reversion parameter is set to zero.

3.6 Coupon rate

Original coupon rate c is estimated based on the observed term structure. However, after calibrating the
volatility and drift parameters and generating the corresponding theoretical term structure described by

equation (hw.vsk.1), the bullet price of the bond may not match the bond par value. The coupon rate c* is
solved for implicitly so that the bullet value of the bond equals to the bond par value.*:

The coupon rate is estimated based on the following equation of the bond par value:

18 Mean —reversion parameter must be positive so that the interest rate reverts to the long-term trend whenever it is above/below the
trend.

19 Equation (3.14) can be viewed not only as the equation that relates mean-reversion to the long-term equilibrium, but also as an
equation which relates drift to the long-term equilibrium.

20 Note that if the bond bullet value is different from the par value, it may be optimal to exercise the bond in period t = 0 immediately
at the bond issue date. The adjustment of the coupon rate is performed to rule out the above cases.

21 An alternative approach is to shift the term structure of the interest rates. However, in the case of CIR and Hull-White (extended
CIR) models a shift in the term structure results in a different volatility function and as a result the distribution over the interest rate
tree must also be recalculated. Calibration of the coupon rate is a more efficient approach to ensure that the bond is priced at par at
t=0.
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where C; are bond coupon payments, P, are bond principal repayments, and D, are zero coupon prices.
The coupon estimation approach depends on the structure of the bond cash flows. Two cases are

ZDtht+ZDtth=100
t t

considered:

| 2

In the case of Vasicek or Hull-White (extended Vasicek) models, the term structure adjustment can be used
as an alternative to the coupon adjustment. The option is selected whenever the coupon must be set fixed

Case A: The bond has interest deferral provision and accrued interest is capitalized over the
interest deferral period. In this case, the cash flow is a non-linear function of the bond coupon rate
and therefore cannot be solved explicitly. The coupon rate that generates the bond par value is
estimated numerically by solving the above implicit equation for the coupon rate. At each iteration
the expression )., D, X C, + )., D, X P, is estimated by running a backward recursion procedure.

Case B: the bond cash flow structure is different from the structure described in Case A. In this
case, the cash flow is a linear function of the bond coupon rate. Therefore, the coupon rate that
generates the bond par value can be estimated as follows:

100 — Y. D; X Pt]
2eDe X Co

where ¢, > 0 is an arbitrary coupon rate. The equation is estimated by (i) running backward

recursion for the repaid principal cash flows P, to estimate Y. D, X P, numerator; (ii) running

backward recursion for the coupon cash flow payment C,, to estimate }., D, x C,, denominator;
and (iii) applying the above equation.

¢ =c¢y X

at the actual bond coupon payment.

3.7

Summary

Parameter estimation procedure is summarized as follows.

| 2

| 2

| 2

Model selection. The formulas applied to estimate the parameters of the model depend on the
selected model.

Variance. The variance parameter is estimated based on the historical sample of short-term yield
rates

» using equation (3.5) for the Vasicek and Hull-White (extended Vasicek) models; and
» using equation (3.6) for the CIR and Hull-White (extended CIR) models.

Drift. The drift parameter is estimated to approximate the term structure linear slope using the
following equations.

» Equations (C.10) for the Hull-White (extended Vasicek) model;
» Equations (3.9) — (3.10) for the Vasicek model;

» Equations (C.11) for the Hull-White (extended CIR) model; and
» Equations (3.12) — (3.13) for the CIR model.

Mean-reversion. The mean reversion parameter is either

» calibrated to match the interest rate long-term equilibrium;

» estimated using HP filter model; or
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» is set to zero assuming a random walk model of interest rates.

» Coupon rate. The coupon rate is estimated numerically so that the price of the bullet bond is equal
to par value.

Conditional on the estimated parameters, zero-coupon bond prices and the term structure of the interest
rate process are estimated as follows.

» Zero-coupon bond prices. Prices of zero-coupon bond prices are estimated as
P(T) = A(T) x e B(Mro

where functions A(T) and B(T) are described for different processes in the Exhibit 2.2. More
detailed equations for the function A(T) for the case of the Hull-White models are provided in the
Appendix A. Specifically

» Equations (A.5) — (A.7) for @ > 0 and equations (A.8) — (A.10) for a = 0 parameter of the Hull-
White (extended Vasicek) model; and

» Equations (A.14) — (A.16) for « > 0 and equations (A.17) — (A.18) for « = 0 parameter of the
Hull-White (extended CIR) model;

» Term structure. The term structure is derived directly from the zero-coupon bond prices using the
equation below

In P(T)
T

R(T) = -
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Section 4 Numerical Modelling

The steps in the numerical modelling of the interest rate options can be summarized as follows.

1. Estimate the discount factors applied in the interest rate option numeric calculations;

2. Estimate the tree of interest rate states and probability distribution over the states, which is derived
from the respective interest rate stochastic process;

3. Estimate the bond cash flows;
4. Estimate numerically the bond value (both the bullet value and the callable/putable bond value).

Each step of the modelling process is summarized below.
4.1 Discount factors

Discount factors are calculated as

D[dt] = Ax e~ 8"

For a selected (small) time increment dt the discount factor can be approximated as
D[dt] — e—dtxro

In practice selected tree step dt may not be small (the default value in the option calculation tool is dt =
0.25). Therefore, itis preferable to use actual bullet prices as discount factors, which depend on the selected
family of the interest rates. The equations for the Vasicek and CIR bullet prices were summarized in
Sections 2.2 and 2.3.

4.2 Interest rate tree estimation

The interest rate tree estimation includes two steps: (i) construction of the tree states and estimation of the
tree states probabilities. The steps are summarized in more detail below.

1. Construction of the interest rate tree states
» Discretize the time/space set of interest rate states.

» To discretize the time a tree step is selected (by default the tree step is set to three-months
period, dt = 0.25). The grid of discrete time periods is set to be uniform.

» The minimum and maximum bounds of the interest rates are estimated. The bounds are
estimated in such a way that the probability of the interest rate process to move outside the
bounds is smaller than some small threshold value.

» The grid of interest rates is constructed within the estimated bounds. For the Vasicek and Hull-
White (extended Vasicek) models the grid is set uniform. For the CIR and Hull-White (extended

CIR) models the grid is constructed so that A—:t are distributed uniformly.
t

N
2. Estimation of the tree states probabilities.

» The set of states in period t = 0 consists of a single state r,,, which is assigned probability one.
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» For each period t and state r;;, transition probabilities q; = Q; ;(t,t + dt) are constructed using
the mean and standard deviation functions u(t,r;) and o(t,r;) of the selected interest rate
process.

» Due to the fact that the states r, 4, ; are discrete, the numerical mean and standard deviation of
the change in interest rates dr; ; will generally be different from the values of u(t,r;) and o(t,1;)
functions. We apply two alternative approaches to adjust the transition probabilities.

Under the default “contraction mapping” approach, parameters u(t,r.) and o(t, r,) are adjusted
to parameters ji(t, ;) and G(t,r;) such that the mean and standard deviation parameters of the
discrete distribution matches the actual parameters p(t, ;) and o(t, ).

Under an alternative approach, the transition probabilities g; estimated using actual parameters
u(t, ) and o (t, 1) are adjusted to new probabilities g; such that under the adjusted probabilities

(i) the mean and standard deviation parameters of the discrete distribution matches the actual
parameters u(t, ;) and o(t, ;) and (i) the distance between probabilities §; and g; is minimized.

Because the transition probabilities are adjusted to match the theoretical transition probabilities
functions, the estimated numerical distribution of interest rates must match closely the
theoretical distributions. Therefore, the validation of the numerical calculations using the interest
rate distribution parameters (described in Section 5) should produce very close numbers
between the numerical and theoretical mean and standard deviation estimates.

A more detailed discussion of modelling transition probabilities is provided in the Appendix B.3.

3. Remove the states with the estimated transition probabilities to reach the state below a certain
small threshold value.

4.3 Estimation of bond cash flows

The next step is to estimate the cash flows in the bond transaction paid by the borrower (received by the
lender) assuming two scenarios: (i) the bond is outstanding and (ii) the bond is redeemed.

If the bond is not redeemed, then the cash flows may include the following components (which can be set
in the option tool).

» Bond coupon payments. The coupon rate and coupon payment frequency must be set to estimate
the coupon payments;

» Interest deferral provision. If the bond has interest deferral provision, then the interest payments
are assumed to be capitalized and repaid after the termination of the interest deferral period;

» Bond principal repayment.
» Bond amortization schedule.

If the bond is redeemed, then the redemption value is estimated based on the specified redemption terms.
» If the bond is redeemed prior to the make-whole provision termination date, then the cost of calling

the bond is assumed to be infinite in the option tool. The option will never be exercised prior to the
make-whole termination date;

» If the bond is redeemed after the make-whole provision termination date, then the redemption value
is estimated based on the provided redemption penalty structure. If there is no penalty, then the
redemption value equals the sum of bond principal value and the accrued interest amount.
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As discussed in the previous section, bond coupon rate is an endogenous parameter in the option tool and
is estimated so that the bullet value of the generated bond cash flows equals to the bond par value.

4.4  Option price estimation

The steps of the option estimation procedure are summarized as follows:

1. Estimate forward prices:

(4.1) Pl =Dy X Z Qi (6t +dt) X Py
]

where Pt(,]i* = 1. The forward prices are applied for the following reasons:

» Estimate bullet prices
» Estimate the term structure

» Estimate the option value after the option is exercised for a non-zero notice period.

2. Estimate the bond bullet value. The bond bullet value is calculated using the backward recursion.
The bond value is estimated first at the maturity date t = T. The value is then estimated backwards.
Assuming that the value is estimated in period t + dt, the value in period t is estimated using the
following equation

(4.2) Pl = ¢ X dt+ Dy X Z Qi j(t, t+dt) X Plygr;
J

where P/; is the bond bullet price, D, ; is the discount factor, c, is the cash flow paid by the bond,
and Q;;(t,t + dt) are interest rate transitional probabilities. Alternatively, the bullet prices can be
estimated using the forward prices:

T
(4.3) P = Z Y X ¢, X dt

=1
The bullet value will generally be different from the bond par value. As a result, it is potentially
possible that it is optimal to exercise the option in period t = 0.

3. Shift the term structure of interest rates (by modifying parameter r, in the term structure equation)
so that the bond bullet value equals the par value. Note that the discount rates D, ; (and respectively
the bond bullet price) decrease uniformly with the increase in r,. Therefore, there is a unique value
of r, such that the bond bullet value equals the par value.

4. Estimate the callable (putable) bond value. The borrower minimizes the cost of the bond by solving
the following optimization problem in each period t and state r;.

(44) Pt,i = min pt,i’ Ce X dt + Dt,i X Z Qi,j(t' t+ dt) X Pt,i
J

where P,; is the callable bond price, and P, ; is the bond redemption value.
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In the case of the putable bond, the lender maximizes the bond value. Therefore, the above
equation is modified accordingly. Note that as part of the option value calculation, the algorithm
also estimates the set of states in which the option is exercised / not exercised. Formally we define
the function indicator of the interest rate tree states in which the option is exercised (not exercised)
as follows:

__(1,if the bond is redemed instate (t,1;)
(4-5) Altn) = {0, otherwise
5. Estimate the value of the option as the difference between the value of the callable (putable) bond
and the value of the bullet bond (bond par value).

The equation (4.4) is solved using standard backward recursion methods, starting from period t = T (when
the bond principal is fully repaid and the price Pr; equals the bond redemption value, and moving backwards
to period t = 0. The backward recursion in the ac.finance.SRM tool is designed to maximize the objective
function. Therefore, for the callable bonds the cash flows and the bond redemption functions are reversed
to the negative sign and minimization is reversed to maximization. (No change is required for the putable
bonds).

4.5  Option premium (discount) estimation

The option price estimated above is a fixed price that should be accounted for as a bond price discount for
callable bond (premium for putable bond). However, in the interest benchmarking analysis the price should
be converted to the bond interest rate premium for callable bond (interest rate discount for putable bond).

Note that the payment of the interest rate premium (discount) is conditional on the fact whether the bond
was redeemed or not. Suppose that A° is the price of the security that pays dt cash flow in each state of
the process in which the option is not exercised (each state (t,r;) such that A(t,7;) = 0. The value of A% is
referred to as the annuity adjustment factor. The value of A° can be calculated numerically using the
backward recursion procedure described by the following equation:

A, = { 0, if t = 0or option was exercised prior tot +

; D, xQ;:(t,t+dt)x A% . .
dt, otherwise tj X Qi (L, t +dt) t+dt,j

Jj:A(t+dt,rj)=0

0, ift = 0or option was exercised prior tot
dt, otherwise
backward recursion procedure. The option premium (discount) = is calculated as follows.

where cﬂ?’i={ is the objective function used in the

(4.6) S

where P is the option price and A° is the annuity adjustment factor.
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Section 5 Model Validation

Numerical estimation of the call or put option involves the following steps:

1. Construction of the interest rate tree, which models stochastic movement in the interest rates;
2. Estimation of the bond bullet value (assuming no option is present);

3. Estimation of the bond value in the presence of the option assuming that the borrower (lender)
chooses whether to exercise the option so that to minimize the cost of the bond (maximize the bond
value);

Whenever possible the numerical calculations should be validated against theoretical values. In the case
of the option estimation algorithm, the following components of the numerical calculations can be validated:

1. Interest rate distribution. Construction of the interest rate tree involves two steps: (i) construction
of the discrete set of tree states, and (ii) estimation of the interest rate distribution over the discrete
set of states. After the interest rate tree is constructed, the mean and standard deviation of the tree
states are estimated for each period based on the constructed discrete set of states and state
probabilities. The numerical distribution of states can be validated against the theoretical
distributions derived in section 4.1. In practice we validate the state distribution only at the maturity
termt =T.

2. Implied model parameters. In practice it may difficult to interpret how material is the deviation of
the terminal distribution mean and standard deviation from the theoretical values. As part of the
model validation process, the terminal distribution mean and standard deviation are converted into
the implied theoretical model parameters. The implied model parameters are compared then with
the actual values used in the model estimation. The details of implied parameters estimation are
provided in the Appendix B.3 and are summarized in the exhibit of Section 5.2..

3. Bond bullet prices. Bond bullet prices are estimated numerically as part of the option calculations.
The formulas for the bond bullet prices were also provided in Section 2. The numerical estimates
of the bond bullet prices can be validated against their theoretical values.

4. Zero volatility parameter.

5. DerivaGem tool. DerivaGem is an option tool developed by John Hull and described in detail in
the Appendix E. DerivaGem implements Hull-White(extended Vasicek) model and therefore the
output of this interest rate option valuation tool can be validated directly against the output of the
DerivaGem tool. The DerivaGem Lognormal model does not correspond to Hull-White(extended
CIR) model and therefore cannot be used to validate it.

5.1 Terminal distribution parameters

To validate the numerically estimated distributions of the interest rates against the theoretical values, we
need to derive the average and standard deviation of the interest rate distribution for each period ¢ (including
t =T). The formulas for the interest rate distribution for different families of interest rate models are
summarized in the exhibit below.
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Exhibit 5.1

Summary of interest rate distribution parameters

Variance

(extended Vasicek,
1990)

inthe case a =0
u=r+0(t)

M=E+e“”x(r—2> v =a—2><(1—e‘2‘”)
a a " 2a
Vasicek (1977) in the case a = 0 in the case a = 0
u=r+9t ve=0%Xt
t g2
T p=e % x|r+ fo e“sﬁ(s)ds] Ve = 5o X (1—e2)

inthe case a =0
v, =0%Xt

Cox — Ingersoll —
Ross (1985)

_19+ —atx( 19)
K=aTe T

inthe case a =0

r )

2 —at —at
vV, =0°X|—Xe X(1-—e =
t [a ( ) a?

1 1
X [=— —at _ —Zat)]
(2 e + 2 e

inthe case a =0

t
U =r+f I(s)ds
0

u=r+9t £2
Ve = 02 x[rt+z9 X =
0.2 X e—2at
o Ve = X [r x (e* — 1)
u=e*x|r+ f e“sﬁ(s)ds] &
Hull-White 0 + f e X (e™ — ™) x 9, du]
(extended CIR, inthe case @ = 0 0
1990) in the case @ = 0

t
v, = 0% X [rt + f (t— u)ﬂudu]
0

As discussed above, the transition probabilities in the numerical model are adjusted so that to approximate
closely theoretical u(t,r;) and o(t,r.) parameters of the selected interest rate process. Therefore, the
parameters of the numerically calculated interest rate distribution should match closely the theoretical
parameters summarized in the Exhibit 5.1 above.

For the stepwise constant drift function, the above equations with the integrals replaced by respective
summations are provided in the Appendix B. Appendix B also provides details on how to derive the above

equations.

5.2

Implied model parameters

The implied parameters are estimated as follows.

» First, we estimate the implied drift parameter based on the terminal distribution mean value. Note
that since Hull-White (extended Vasicek and CIR) models have a time-dependent drift parameter,
we estimate the average value of the drift parameter. The estimates for the constant implied drift
parameter are described in the Appendix B.1.3 by equation (B.3) for « > 0 and equation (B.4) for

a = 0 and are summarized in the Exhibit 5.2 below.

» Next, we estimate the implied volatility parameter conditional on the estimated drift parameter. In
the case of Hull-White (extended Vasicek and CIR) models, we substitute the average constant
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drift parameter in the terminal distribution variance equation and derive the respective implied
variance parameter.

» In the case of Vasicek and Hull-White (extended Vasicek) models the implied volatility
parameters are described by equation (B.5) for a > 0 and equation (B.6) for « = 0 and are
summarized in the Exhibit 5.2 below.

» In the case of CIR and Hull-White (extended CIR) models the implied volatility parameters are
described by equation (B.9) for @ > 0 and equation (B.10) for « = 0 and are summarized in the
Exhibit 5.2 below

The equations for the implied model parameters are summarized in the Exhibit 5.2 below.

Exhibit 5.2  Summary of interest rate distribution parameters

Variance

pup —re T o = oy X _ e
Vasicek (1977) and 9 =ax EEre 1—e2aT
Hull-White . € .
(extended Vasicek in the case a = 0 miie EEee =0
' —r
1990) 9 = ”TT 1
= X —
o =or T
or
o' =
Cox — Ingersoll — _ pr —re " \/ﬁ X et x (1 — e—at 9 % 1 e p 1l 2
Ross (1985) and W)= 1—eal a”® d-e )+a2 (2 g )
Hull-White inthe case a = 0 inthe case @ = 0
(extended CIR, Up —T _ ar
1990) =" 7= T2
rT +9 X 7

5.3 Validation against deterministic model

The objective of the validation approach is to simplify the model so that the stochastic model is converted
to a deterministic model which can be estimated simple NPV calculations. Basically, the objective of the
validation approach is to ensure consistency of bond valuation with the limit deterministic approach. Note
that since the deterministic approach is in many cases a default approach to valuation, it is important to
ensure consistency in valuation and understand the source of valuation discrepancies (if any).

To convert the stochastic into a deterministic model, we consider a limit case o = 0. For simplicity we also
assume a = 0. Under the parameters both Hull-White extended Vasicek and CIR interest rate models are
described by the following equation:

(5.1) dr, = 9, x dt

or equivalently
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t

(5.2) n=f&x$
0

The equation (5.2) models forward market rates. Zero-coupon prices are modelled as

(5.3) p, = e—fotrsxds _ e—f(f[fg‘ﬂuxdu]xds _ e—f(fﬁsx(t—s)xds

Yield rates are described respectively by the following equation

InP, _Jy 8% (t—s) xds
t t

(5.4)

t

Validation algorithm.

(i) Drift parameter
» Estimate the term structure {y;} used in the analysis
» Estimate deterministic discount rates using the equation below

P_1—%ng+m+@qaﬂ]

4 1+y4;
and
po_ L
1+y,A
» Estimate forward rates using the equation below
Aln P,
LIY:
» Estimate deterministic drift parameter using the equation below
Ary
9 = At

» Compare the deterministic drifts to the drift term structure estimated by the stochastic model
with ¢ = 0. The equations for the drift parameter in Hull-White Vasicek and CIR models in the

limit ¢ —» 0 case are summarized as follows.

(i) Bullet price
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5.4  Validation using DerivaGem tool

DerivaGem tool is described in detail in the Appendix E. Validation of the interest rate option estimation
results using the DerivaGem tool is illustrated in the Appendix F.4.1.2.

Konstantin Rybakov Interest Rate Options Page 34 of 89



Appendix A Zero-Coupon Bond Prices and Yield Term
Structure

Price of any interest rate contingent claim (denoted as f) must satisfy the following differential equation.

(A.1) fi + (p(t, 1) —ar) X f. +%02(t,r)xfrr—rf=0

where ¢(t, ) = 9(t) — A(t)a(t,r) and A(t) is the market price of interest rate risk. For simplicity, we assume
that

A)=21=0

If f represents the price of zero-coupon bond, then under the affine terms structure interest arte model, the
price of a zero-coupon bond is assumed to be described by the following equation:

f — A(t, T)e—B(t,T)Xr

At t = T the zero-coupon bond has par value, f = 1. Therefore, the boundary conditions are described by
the following equations

(A.2) A(T,T) =1 and B(T,T) = 0

For the price function of the form f = A(t, T)e 2D, the following properties hold.
A Ay
fo=SiXforB X f = (Z—r3t>xf

fr=-Bxf

and

fer =BXf

After substituting the above equations in the equation (A.1), we obtain

(A.3) <ﬁ—rB)—(¢(tr)—ar)xB+E62(tr)xBZ—r—O
. N A : > ) =

A.1 Vasicek and Hull-White (extended Vasicek)

In this section, zero-coupon bond prices are derived for the Vasicek and Hull-White (extended Vasicek)
models.
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A.1.1 Hull-White (extended Vasicek)

A.1.1.1 General case

In the case of Hull-White (extended Vasicek) model the equation becomes
1
ft+(z9(t)+ab—lo'—ar)><fr+§o'2 X frr—1f =0

or equivalently, assuming
b=0, ¢(t,r) =9(t) — Ac and o2(t, 1) = 02

the equation (A.3) can be presented then as follows:
A, 1
_r X [Bt—aB+1]+[X—(ﬁ(t)+lo)x3+zaz x B2 = 0

which can be equivalently represented by the following system of equations
Bi—aB+1=0
A, 1
X_ @) — A0) XB+EO'2 xB?=0

with the boundary conditions described by equations (A.2).

The system of equations has the following solution:

1-— e—a(T—t)
B(t,T) =

A (t T) =e - ftT[(ﬂ(S)—ﬂ.G)XB(s’T)_%O.ZXBZ(SJT)]XdS
or equivalently?2:2¢

—e —a(T-t)

B(t,T) =
(A.4) 2 2
o?B(t,T) ]

_[ftT[ﬁ(s)—/la]><B(s,T)de—%x(T—t—B(t,T))+ o

A(t,T)=e

For t = 0, the equations can be represented as follows.

~a(T—s) _ ~a(T-s) _ _p—a(T—t) _t— . A
2 (T _ ri—ed _T-t e 7 _T-t (1-e _ T-t-B(tT) tisr _tiga—ti
J B(s,T)ds = |, ——ds=————|{ =~ ——) =———— More generally, ft B(s, T)ds = =2—
ea9) |ti+1 _ (tisa—t)—(B(t;T)=B(t11,7))
a? t; - a "
2 (T p2 _ Tl_ze—a(T—s)+e—Za(T—5) _ E _ e—a(T—s) T e—Za(T—s) T _ E _ 1_e—a(T—t) l_e—Za(T—t) _ T—t—B(t,T) _ Bz(t,T)
ft B*(s, T)ds _ft a? ds = a? 2 a3 le + 2a8 le = a? ZX a3 + 2a3 - a? 2a
2 _ T _lo2y (T2 = e X(_E)_l Z[T‘t‘B_B_Z__”_Z e (’1_“ 1)
(A0) x [ B(s,T)ds -0 xftB(s,T)ds—azx(T t—B) —) =39 |0 - azx(T t—B) x ey s

o°B?

4a
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1—e ol
B(T) = ———
(A5)

4a

T a2
AT = e—[ Jo 9(5)~A01XB () x5~ (TB)+

If 9(s) is a stepwise function, then function A(T) can be estimated recursively as follows. Function A(T) is
represented equivalently as follows

2 ZB(T)Z
(A.6) A(T) = e~ HD x E[JTX(T‘B(T))‘GT]

where
T

H(T) = f [9(s) — Ac] X B(s,T) x ds
0

Suppose that H(t;) has been estimated and 9(s) is constant on the interval [¢;, t;,,] and is equal to 9(s) =
9;. Then H(t;,,) is estimated as follows.

t) — (B(ti'T) - B(ti+1'T))
a

(A.7) H(T) = Z (¥i41 — 40) X Sae”

i:t;<T

Values of function A(T) are estimated recursively for a stepwise constant function 9(s) using equations (A.6) and
(A.7).

A.1.1.2 Zero mean-reversion

The formulas for the special zero mean-reversion model case are derived by taking the limit @ — 0 in the
equations (A.4).%2%

B(t,T,a=0)=T-t

(A.8) T a?
e_[ff [9(s)-A0]x(T=5)ds=Fx(T-0)%|

A(t,T,a =0) =

If 9(s) is a stepwise function, then function A(T) can be estimated recursively as follows. Function A(T) is
represented equivalently as follows

1o~ 1-(1-a(r-0)+3a?x(T-0)2-2a?x(T-1)%)

®B(T—t)=—070 -
1 titt;
2X(T = 1) = (T = ty)?) = (T = 22) X (64 — 1)

(tir1—t)—(BtuT) =B (ti41,T)) 5
a

=(T-t)— %a(T -+ iaZ(T —t)% and therefore

2 _Tx (T —t-B)x (L + 1)+ 28 = —Tx (FaT — 02 — 22T — 03) x (2 4+ 1) + X [(T = )2 = a(T — )] = 22 (T —

5 2 4a 2
t)2 —%X(T—t)3
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2
(A.9) A(T) = e~HT) x g6 X0

where

T
H(T) =f [9(s) —Ao] x (T —s) xds

Suppose that H(t;) has been estimated and 9(s) is constant on the interval [t;, t;,,] and is equal to 9(s) =
9;. Then H(t;,,) is estimated as follows.

(A.10) H(T) = zz(ﬁHl_AU)X(T“Ej§Ei>X(Q+1—tQ

i:t;<T

Values of function A(T) are estimated recursively for a stepwise constant function 9(s) using equations (A.9) and
(A.10).

A.1.2 Vasicek

Vasicek is a special case of the Hull-White (extended Vasicek) model with constant parameter 9(t) = 9.
The formulas for the zero-coupon bond prices are simplified in this case as follows.

A.1.2.1 General case

After integrating the ftTﬁ(s) X B(s) X ds expression?, we get the following formula

1— e—a(T—t)
{B t.7T)= >

(A.11) [( B _6_2>X(T—t—B(t,T)) ,02B(LT)>?

2a a 4a

\AT) = e

A.1.2.2 Zero mean-reversion

If we take the limit @ — 0 in the equations (A.5), we get the following formulas for zero-coupon bond prices
in Vasicek model with zero mean-reversion parameter

B(t,T,a=0)=T—t

(A.12) . —[(ﬁ—la)x—(T_Zt)z—%ZX(T—L')3]

A, T,a = 0) =

T-t-B
a

27 f:ﬁ(s) X B(s) X ds = 9 X
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A.2  CIR and Hull-White (extended CIR)

In this section, zero-coupon bond prices are derived for the CIR and Hull-White (extended CIR) models.

5.4.1 Hull-White (extended CIR)

5.4.1.1 General case

In the case of Hull-White (extended CIR) model the equation becomes
1
ft+(19(t)+ab—(a+/10)xr)><fr+zazxrxfrr—rfzo
or equivalently, assuming
b=0,9 =a+ 4o, and o(t,1) = o%r
the equation (A.3) can be presented then as follows:
1 A,
—r X [Bt—zpB—zaz x B? +1] + [I_ﬁ(t) xB] =0
which can be equivalently represented by the following system of equations
q

Bt—¢3—502x32+1=0

A s@w)yxB=0

SO xB =
with the boundary conditions described by equations (A.2).

The system of equations has the following solution:

2% (e?T0 —1)
B(t,T) =
(A.13) y+a+20) x (e?T- —1) + 2y
A6 T) = o~ Il 9()xB(sT)xds

where y = {/(a + 10)? + 202.

For t = 0, the equations can be represented as follows.
2% (e'T —1
B(T) = ( )

(A.14) y+a+ o) x (e —1)+2y
A(T) — e—f:ﬂ(s)xB(s,T)xds

If 9(s) is a stepwise function, then function A(T) can be estimated recursively as follows. Function A(T) is
represented equivalently as follows
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(A.15) A(T) = e HD

where

H(T) = fTﬁ(s) X B(s,T) X ds
0

Suppose that H(t;) has been estimated and 9(s) is constant on the interval [t;, t;,,] and is equal to 9(s) =
9;. Then H(t;,,) is estimated as follows.

2 4
H(T): Z 19LX|:_ X[ti+1_ti]+ 2 2
. y—«a V- a
(A.16) it

X (n[(y + @) x e’'it1 + (y —a)] = In[(y + @) x e""i + (y — a)])]

Values of function A(T) are estimated recursively for a stepwise constant function 9(s) using equations (A.15) and
(A.16).

5.4.1.2 Zero mean-reversion

The formulas for the special zero mean-reversion model case are derived by taking the limit @ — 0 in the
equations (A.13). As a@ — 0, y converges to y = av2 + A2 and the equations (A.13) can be represented as
follows.

B(t,T,a = 0) 2% (er™0 —1)
f ) a — —
(A.17) (y + 20) x (e¥T-0) — 1) + 2y

A(t, T,Ol — 0) — e—ftTﬁ(S)XB(S)XdS
With zero mean-reversion parameter equation (A.16) is described as follows.

A.18 H(T) = Z 9; X [—z X [tiz: — t] -l-i X (In[e"ti+1 + 1] — In[e?" + 1])]
(A.18) i Y i+ i v

i:t;<T

A.21 CIR

CIR is a special case of the Hull-White (extended CIR) model with constant parameter 9(t) = 9. The
formulas for the zero-coupon bond prices are simplified in this case as follows.

A.2.1.1 General case

After integrating the f:ﬁ(s) X B(s) X ds expression, we get the following formula
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( 2% (T8 —1)
B(t,T) =
y+a+ o) x (e?TD —1)+2y
(A.19) 29
2 X Y X e(y+a+ld)(T—t)/2 o2
lA(t, T) =
y+a+ o) x (e¥T-) — 1) + 2y

A.2.1.2 Zero mean-reversion

If we take the limit « — 0 in the equations (A.19), we get the following formulas for zero-coupon bond prices
in CIR model with zero mean-reversion parameter

(Bee,7,0 = 0) 2x (70— 1)
, 1, a = =
(y + 20) x (e¥T-9 — 1) + 2y
(A.20) 20
2 Xy x eWHOT-0/2 152
A, T,a =0) =
\ ( ) (y + 20) x (e¥T-O — 1) + 2y
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Appendix B Interest Rate Distribution Parameters

The derived mean and variance parameters of the interest rate distribution are applied to validate the
numerically calculated distribution of the interest rates. The mean and variance are estimated based on the
interest rate model

dr, = (9(t) —ary) x dt + o(t,r,) X dW;
which can be equivalently represented as

Tepar =1 X (1 — adt) + o(t, 1) X dW, + 9(t)dt

B.1 Distribution mean

Suppose that u, = Er;. Then the differential equation for the u, function is described by the following
formula.

Hevar = e X (1 — adt) +9(t)dt
or equivalently
w+ap =9(t)

B.1.1 Stepwise-constant drift

Suppose that u = e~ xn. Thene™* x5’ =9(t)orn =1+ foteasﬁ(s)ds. Therefore, we get the following
formula in general case.

t
(B.1) u=e%x [r +f e“sﬁ(s)ds]
0

For a stepwise constant 9(u) function, equation (B.1) can be represented as follows?

1
(B.2) u=e*x|r+ o X z (ebti+1 — g%ti) x 99,

iit;<t

B.1.2 Stepwise-constant drift and zero mean-reversion

If « = 0 then the general equation (B.2) is simplified to the following equation

28 f;iﬂ e ds = i x (etir1 — gati)
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®3) pert [0@ds =1+ ) (s -0,

iiti<t

B.1.3 Constant drift

For the constant 9(t) = 9 parameter equation (B.2) is reduced to the following formula

J 9
(B.4) p=setx(r-2)
a a

Note that g is the long-term equilibrium of the interest rates.

B.1.4 Constant drift and zero mean-reversion

For the constant 9(t) = 9 parameter and a — 0 equation (B.4) is reduced to the following formula

(B.5) u=r+9t

Note that the equations derived for the interest rate distribution mean parameter apply to both Vasicek
(Hull-White extended Vasicek) and to CIR (Hull-White extended CIR) interest rate models.

B.2 Distribution variance

The equation for the interest rate variance is derived separately for the Vasicek and CIR models.

B.2.1 Vasicek and Hull-White (extended Vasicek)

In the case of Hull-White (extended Vasicek) model, the variance of the interest rates is derived based on
the following equation.

Terar = Te X (1 — adt) + o X dW; + 9(t)dt

Suppose that v, denotes the variance of the interest rates. Then the variance v, is described by the following
equation

Verar = Ve X (1 — adt)? + o2dt
The equation can be represented equivalently as follows
v; + 2av, = 02

2
If we look for the solution in the form v, = e~2%t x v, then e 2% x v} = g2 or v, = Z—a x (e?%t —1). The

equation for v, then becomes
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2

o
(B.6) Ve = 5o x (1 - e72)

As a - 0, equation (B.6) becomes

(B.7) Ve =02Xt

B.2.2 Hull-White (extended CIR)

In the case of Hull-White (extended Vasicek) model, the variance of the interest rates is derived based on
the following equation.

Terar = Te X (1 — adt) + o/, X dW, +9(D)dt

Suppose that v, denotes the variance of the interest rates. Then the variance v; is described by the following
equation.

Verar = E[re X (1 — adt) + o /1, % th]z — (E[n x 1 — adt) + o /1 x th])z
or equivalently
Vepar = Elne x (1 —adt)? + 62 X pe X dt — (E[r; X (1 — adt)])? = v, x (1 — adt)? + 62 x p, X dt
The above formula can be represented as the following differential equation
vi + 2av, = 0% X u,
where p, = e™* X [r + foteasﬁ(s)ds] was derived in equation (B.1).
The generic solution of the differential equation is described by the following formula®

¢
rx (e% —1) +f e x (e — e™) x 9,du
0

O.2 X e—Zat
(B.8) v =—————X

For a stepwise constant 9(u) function, equation (B.8) can be represented as follows.*

- t — t - t t t
2 v, =02 X e X [[e?®pds = 62 X e 2% X [(e X [r + [T ™9, du]ds = 0? X e72% x [r X Jy e + [ em 0, x (fu e‘“ds) x du] =

o?xe2at at _ t au at _ ,au ]
— x[rx(e D+ [je™ x (e e™) X 9,

. at; at;
30 f:H e (el — eaU) X dy = i x [eat X (eftit1 — gati) — % x (e2ativt — 82ati)] - i X (eftit1 — gati) x (eut _ e iHite l)

2
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0.2 X e—Zat 1 eati+1 + eati
(B.9) vp=——— X [rx (e —-1)+—x Z (e%tiv1 — gty x (@ ————— | x ¥,
* « i:t;<t 2
Lt

As a - 0, equation (B.8) becomes

(B.10) Ve =0l x|rt + J-t(t —u) X B(u)du]
0

For a stepwise constant 9(u) function, equation (B.10) can be represented as follows?

ti1 +
_ Livg L> x 9,

(B.11) ve = 0% X |rt + Z (tioy — £7) X (t -

i<t

B.2.3 CIR

If parameter 9(t) = 9 is constant, the equation (B.8) can be simplified as follows.

r ) 1 1
— 42 - - - -2
(B.12) vVe=o0 ><Exe“tx(l—e“t)+?x(z—e"‘t+§e “t)]

As a - 0, equation (B.12) becomes

t2
(B.13) Ve =02 X [rt +9 x =

B.3 Transition probabilities

In this section we consider two alternative approaches to adjusting transition probabilities. Under the first
(default) approach, matching with the theoretical mean and standard deviation parameters of the interest
rate process is performed by applying a contraction mapping to the mean and standard deviation
parameters. The approach is described in Appendix B.3.1.

In an alternative approach, transition probability adjustment is performed by making a minimum adjustment
to the pre-adjusted probabilities so that the mean and standard deviation of the adjusted probabilities match
the theoretical mean and standard deviation parameters. A potential problem with the approach is that
some of the adjusted transition probabilities may be negative. If we impose a restriction that the adjusted
probabilities are non-negative numbers, then implementation of the approach may become more time
intensive and inefficient compared to the first approach. The approach is described in Appendix B.3.2.

t; -w? —t)? —tip1)?  2xtx(tipq—t)—(tH —t? i i
31 ftil+1(t —w)du = — (¢ Zu) |§:+1 _G 2tl) G c;l) _ 2%t 21) (tha=t?) _ (birs — ) X (t _ tl+;+n)
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B.3.1 Adjustment estimation based on contraction mapping

Suppose that u and o are the parameters of the transition probabilities that we need to match in state r;;
and that 4(u;,0;) and 6(u;, g;) are the mean and standard deviation parameters of transition probabilities
estimated numerically in state r,; based on the discrete approximation of the process set of states. Then
the contraction mapping is defined as follows.

{#m =y + 4, % [u= 4w, 07)]
Gjs1 = 05 + Ay % [0 = 6(1j,07)]

for some parameters 1, <1 amd 4, < 1. If the above mapping is a contraction mapping [Note: need to
prove it] then the sequence of parameters (uj, aj) converges to a solution

{#j+1 = Hj
9j+1 = 9

or equivalently

{ﬁ(uj. o) = u

G(upo5) = o
The algorithm can be summarized as follows.

» Start with the theoretical values u, = ¢ and g, = o;

» At each iteration j, estimate the transition distribution probabilities assuming Normal distribution
with parameters (;, 0;);

» Estimate numeric mean and standard deviation parameters (.uj+1:0'j+1) based on the discrete
distribution estimated at the previous step;

» If the numeric mean ﬁ(yj,aj) (standard deviation 6(yj,aj)) is below (above) the theoretical value
at iteration j, then we respectively increase (decrease) the mean (standard deviation) parameter;

» Continue the iterations until the numerical value converges to the theoretical value sufficiently close.

» Parameters 4, and 4, are selected to ensure that the mapping is a contraction mapping and to
maximize the speed of convergence to the theoretical mean and standard deviation values.

B.3.2 Adjustment estimation based on minimum deviation from pre-adjusted normal
probabilities

As discussed in Section 4.2, the transition probabilities are estimated by solving the following optimization
problem. In the notation below we assume that period t and process state 7, ; are fixed and that the transition
probabilities in the state r,; are estimated (we omit the indices t and i in the equation below).

1 -
J

under the following constraints:
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J

z gj X (rt+dt,j - rt,i) = .ll(t, Tt,i) Xdt=m
j

- 2
z q; X (rt+dt,j - rt,i) =o?(t, 1) X dt + [u(t, 1) x dt]* = s,
j

Note that because the set of constraints consist of three equations, the number of branches in the modelling
tree must be at least three to ensure that the system of constraints has a solution. It is generally not possible
to match the drift and volatility parameters of an interest rate process using binary trees to approximate the
Brownian motion.

Lagrangian of the optimization model is described by the following equation

Y,

1
L= —52(51 — )" + 2 %
j J J J

+ 1, X lm - Z g x (rt+dt,j )

~ 2
+ A3 X lsz - Z qj X (rt+dt,j )

In the matrix notation, the Lagrangian can be represented as follows.

1
L:—E(ﬁ—q)TxDx(a—q)—qTxXX/1+(/11+/12xm+/13sz)

where
_ 2
q; Po 0 1 7rean — Ty (rt+dt,1 - rt,i)
-p 2
0 0 g, 1 Tepgen = Te (rt+dt,n - rt,i)

The first-order conditions for the optimization problem are described by the following equations:

{Dx(f,—q):XxA
X"xg=c

where ¢ = (1,m, s,). The system of equations has the following solution

{/1 =X'DIX) I x (c—Xx"q)
g=q+D1xXx2

The above equation does not guarantee that estimated adjusted probabilities § are positive. The negative
values of § are replaced with zeros and the probabilities are normalized. As a result, there may be some
deviation of the mean and standard deviation parameters from the theoretical values. Examples are
illustrated in the Appendix G.2.
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Appendix C Alternative Parameter Estimation Methods

Section 3 describes the default approach to the option model parameters estimation (which is implemented
in the ac.finance.SRM tool. This section summarizes other alternative parameter estimation methods.

C.1 Volatility parameter

Alternative methods for volatility parameter estimation are summarized below.

C.1.1 Sample variance based on daily data

The sample volatility is derived for Vasicek and CIR models. Volatility is estimated for the daily frequency
and then is converted into the annual volatility using the following equation:32

(C.1) & =250 x 0,

where u; is the error term of the interest rate process. The equation for the error term u, is derived
separately for each type of the interest rate process. The key downside of the approach is the sensitivity of
the volatility estimator to the sample outliers (which impact is amplified by the \/% factor).

C.1.1.1 Vasicek model

Sample volatility is estimated based on the following short rate representation.

dr; = (9; —ary) X dt + g x dW,

so that the residuals are estimated as follows

_dr

(C.2) U = NZT

In practical applications, dt is assumed constant and is calculated based on the number of business days
during the year: dt = ziso Equation Error! Reference source not found. represents a daily sample of

residuals, which can be used to estimate the volatility parameter. A potential problem with the daily sample
is that outlier data can have a material impact on the volatility estimation.
C.1.1.2 CIR and Hull-White (extended CIR)

Sample volatility is estimated based on the following short rate representation.

drt=(19t—art)xdt+a><\/r_t><th

dr

=t
JTexdt

so that ¢ is estimated as a sample standard deviation of the { } sample:

%2 The equation assumes that the yield series has daily frequency. If the frequency of the yield series is different, the equation must
be adjusted accordingly.

Konstantin Rybakov Interest Rate Options Page 48 of 89



dr;

A1 X dt

In practical applications, dt is assumed constant and is calculated based on the number of business days

. . _ 1
during the year: dt = e

(C.3) Uy =

C.1.2 EWMA//GARCH(1, 1) variance estimate
Under the GARCH(1, 1) approach, the volatility is modelled as follows:

Uy = Opép
(C4) {O_r% =yV, +aui_, + Bo;_y
where

(C.5) y+a+p=1

The volatility in each specific period is conditional on the previous period volatility and this period change
in the interest rates. Term V; represents long-term volatility. This is a latent variable which is calculated as
part of the GARCH(1, 1) model estimation process.

The model is estimated as a regression equation using maximum likelihood methods.

©.6) {un = Opép

02 =w+au’_; + Boi_,

Parameters y and V, are estimated then as follows

(C.7) y=1—a—,8andVL=$

If the intercept parameter w is estimated as negative, then it is set to zero and the GARCH(1, 1) model
becomes EWMA model described by the following equation

c8) {un = Opén

op = agh_ +(1—a)a;_,
Parameter a in JPMorgan RiskMetrics®2 tool is set to

(C.9) a=006and 1 —a =094

based on the statistical analysis performed by JPMorgan (see [1] pages 198 — 205).

33 https://en.wikipedia.org/wiki/RiskMetrics.
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C.1.3 Volatility based on Bloomberg’s SWPM tool

Bloomberg Swap Manager (SWPM) tool estimates implied volatility of a base rate (including volatility of
Libor rates) as part of interest rate cap calculations. The screen with the output of interest rate cap
calculations is provided in the exhibit below.

~ Actions - | Products + |  Views- | Infor |  Settings- |  Swap Manager
ESTR discounting change on July 27, 2020. Click here for details.
Solver (Premium) « d Save Trade ~ [ CCP ~ |
W 4 Details 9 Curves 6 Cashflow 7) Resets 9 Scenario ‘ 10 Risk ‘ 12 Matrix

Cap Counterparty ICAP CNTRPARTY  |+| Ticker /[ CAP Properties
M Valuation Settings
Style Caj +| Index 3M USO003M Curve Date 07/28/2020 |5
Position Long |+| X [1] Spread 0.000 bp Valuation 08/11/2020 [=
Notional 10MM Leverage 1.00000 Model Normal |-
Currency USsD [+] Day Count ACT/360 v Volatility Type Normal |-
Type 0D | x| 10Y | ResetFreq Quarterly v [ OIS DC Stripping
Effective 08/11/2020 [8| Pay Freq Quarterly .
Maturity i 08/11/2030 __ [8| Fee Date 08/11/2020 |5
Cap Strike 0.566649 |% Fee(Pay) 0,00
O Digital O Single Look
W Market
[Valuation Restilts B N Calculators -] o
ATM Strike 0.566649 Implied Vol (bp) 57.10 DVvo1 -3,749.73
Yield Value (bp) 48.886 Premium 4.85677 Gamma (1bp) 30.56
NPV Without Fee 485,676.97 BP Value 485.67697  Vega (1bp) 7,614.81
NPV 485,676.97 Theta (1-day) -185.05

SN 826675 EDT GMT-4:00 G622-7921-3 04-Rug-2020 15:19:36

The exhibit above shows that, as part of the interest rate cap valuation, SWPM estimated implied Libor
volatility at 0.57%.

C.1.4 CBOE interest rate volatility index

Alternatively, volatility parameter can be estimated using CBOE SRVIX interest rate volatility index34
reported by Bloomberg and illustrated in the exhibit below. The description of the SRVIX index estimation
methodology is described in the white paper released by CBOE. 3% According to the white paper, the
volatility index is estimated based on the Black (1976) formula for the underlying bond prices.3®

34 SRVIX index overview: http://www.cboe.com/index/dashboard/srvix#srvix-overview.

35 SRVIX index white paper: https://www.cboe.com/micro/srvix/srvix.pdf.

36 hitps://en.wikipedia.org/wiki/Black _model.
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Exhibit 5.3

SRVIX T e
Bl At 15:44 0 64.77 H 64.91
Cboe Interest Rate Volatility Index
The CBOE Interest Rate Volatility Ind
by the sy
first Interes
swaptions. (Formerly SRVX)
3) Price Chart | GP »

Prices

9 Intraday | GIP » s

5 Bar | GPO » Week High
ek Low

Index Information

ption v
Index launched by CBOE & i

Interest rate volatility index SRVIX

L 64.46 Prev 64.77

Security Description: Index
FIGI BBG0034S4KV4
ket value of future volatility implied
of the underlying SRVIX is the
based on 1Y-10Y US Dollar

neasures the fair
urity and ten

6 Return Analysis | TRA »
Period Level
1 Day 64.77
5 Days 63.39
MTD 64.77
QTD 64.77
YTD 68.08
1 Month 65.19
3 Month 66.59
5 71.00
73.19
69.47
88.05
72.68

% Chg Annual

+1.77 +149.24

64.51(15:44:37)
90.18 (03/19/20)
61.26 (07/30/20)

09:30 - 16:15
usb

ing Hours
Currency
Volume

68.08
71.97
66.58

C.2  Drift parameter

The section describes the equations for the drift parameter estimation in Hull-White (extended Vasicek) and
Hull-White (extended CIR) models.

C.2.1 Hull-White (extended Vasicek) model

The term structure for the Hull-White (extended Vasicek) is described by the following equations®’

T o? 0%B(0,T)?
TRy = B(0,T) X 15 + f 9(s) X B(s,T) X ds — 5— X (T—B(0,T)) +¥
0 2a 4a
which, in case a = 0 becomes
T O.Z
TRT=T><rO+J- ﬁ(s)x(T—s)xds—?xT3
0
Suppose that
a?B(0,T)?

G(T):fo19(5)xB(s,T)xds:TRT—B(O,T)xr0+2"7x(r—3(o,r))— -

which, in case a = 0 becomes
2

T
G(T)=f 19(5)x(T—s)xds:TRT—Txr0+%xT3
0

Suppose that t, =0, t4, ..., t,_1,t, = T are discrete periods with observed market yield rates R; and respective values
of the function G(T) equal to G;. Function 9(s) is assumed to be constant and equal to 9;,, on the interval t €

_e—a(T-s)

37 A reminder that B(s, t) = - ST—sasa—0
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[t tiva]. If we denote fiyq, = f:_‘“ B(s,T) % ds, then the unknown parameters 9; are estimated recursively as
described in the equation below.

Gy ,
Y9 =—, ifn=1
C.10 Pa
(€10 Gy — X150, % By,
lﬁn = oifn>1
ﬁn,n
where

(tis1 — t) — (B(T — &) = B(T — ti11))
a

ﬁi+1,n =
If « — 0, then the equation for B, is described as follows.

Bitin = (tipr — t) X (T — t*)

where ¢ = fxith

In the case of the Hull-White model, the discrete term structure of the interest rates is assumed to be
generated by a piecewise-constant structure of drift parameters: t; - 9;,, (using equation (vsk.3b)), which
is then converted to a function defined as

9(t) =01 for U € [t;tyq)

C.2.2 Hull-White (extended CIR) model
As before, suppose that t, =0,t,...,t,_1,t, =T are discrete periods with observed market yield rates R; and
respective values of the function G(T) equal to G;. If we denote 1, = f:i“B(s, T) % ds, then the unknown

parameters U; are estimated recursively as described in the equation below.

s G P
1 =, lrfn=
ﬁl,l
G — X350, % B,
lﬁn _ 1 in
Bun

(C.11)

ifn>1

where3®

-2 4
g X [t — ]+ m X (ln[(y +a)x Tt 4 (y — a)] _ ln[(y +a) x e?Ttw) 4 (y — a)])

tivy
Bivin = f B(s,T) x ds =
t

i

- tirt ot 2x(@T9-1) R =2t [+ xe T4 (-0) |-V Tx (=) + (r+a))
fti B(S' T) X ds = fti (rra)x(erT=5)-1)+2y x ds = fti (y+a)xe'T=5)+(y—a) X as = y—a fti (y+a)xe"T=5) 4 (y—a) X
- -2 4T -z S D S YT 4 (y — )] |1 = =2
ds = X [t — ] =X 2 x f:l T = e [t — &] oo * ln[(y +a)xe + (@ a)] [ = X
4 . T—¢.
[t —t]+ it X ([ + @) x e’ + (y — )| = In[(y + @) x T~ + (y — @)])
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If the mean-reversion parameter is zero, a = 0, then the above equation is simplified to the following
equation.

-2 4
Bisin = m X [tipg — t;] + " x (In[e?T=t + 1] — In[e? Tt + 1])

C.3 Mean-reversion parameter

Alternative methods for mean-reversion parameter estimation are summarized below.

C.3.1 Mean-reversion parameter implied by term structure

The implied mean-reversion parameter is estimated based on the yield term structure.

C.3.1.1 Vasicek - unconstrained

2
(B-T)x(a%p-02/2) o2B2 +2p2 (B—T)X(azﬁ—%)

After substituting P, = |e aZ s | x e”P, we get —InPp = ———————+ Bry or

2
o2RB2 (B—T)X(a@—%)

TRy — Bry = -
T "o 4a a?
The equation can be rewritten as
TRy — Bry= —B x (B —T) + 2y [BL BT
1= Bro=-F 7" 22 " 2a2

_,—aT
The parameters are estimated as follows. For a given value of «, the function B = 167 is estimated and

the above linear model is estimated. The coefficients ¢ and g are estimated from the linear model and
parameter « is selected to minimize the overall sum of squares in the linear regression. The estimation
procedure is reduced to the optimization problem for a non-linear function of a variable.

C.3.1.2 Vasicek - constrained

In the constrained version of the model, § = r, so that the steady state is equal to the current yield rate.
The equation then becomes:

,_[B* B-T
TRy —Try=0°X E‘FW
or, formally,
B =t A, =0, and A, =24 B=T
O =t 4, =0, an 27 4a " 2a?
. _,—aT
Where B == — The price in the case of constrained model is calculated as follows

_o? 5_2+E]
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Appendix D Bond Repayment Terms and Option Penalty
Structure

XX

D.1 Call option

A typical penalty structure of a callable bond can be summarized as follows:

» Make-whole provision. The callable bond has a make-whole provision, which is effective until
certain make-whole provision termination date. Prior to a make-whole termination date, a cost of
exercising a call option is assumed to be very high and effectively the note is assumed to be non-
callable because a size of a make-whole penalty makes it very expensive for a borrower to prepay
early.

» Redemption penalty. On a make-whole termination date, a prepayment penalty is set as a fixed
percentage of a note principal amount. This penalty rate varied for different callable bonds.

» Redemption penalty structure. A penalty fixed percentage is reduced over time. A penalty
reduction is approximately linear over time: after every fixed period of time, a penalty is reduced by
a fixed amount until a penalty becomes zero on a callable bond maturity date.

This penalty structure can be presented schematically using the following diagram:

Exhibit D.1 Callable bond prepayment penalty structure

Bond is effectivel
y Bond prepayment can be

1 1 } 1
1 1
1 non-callable dueto | ' i
I presence of make- 1 1 exercised but a penalty 1
1 isi 1 : . 1
; Whole provision ' , applies, which depends on the
______ N U |
\ " e e e e e e e
\ - : 1
X L% ) 1 Linear !
> ~ 1 . . 1
= ~ , approximation of the 1
c 4% ~ ! | . 1
) ~ ! stepn-wise penaltv \
S 2% ;: ~ 1 _L—'— __________
i ~ T 1
! ~
I »years
Make-whole maturity date

termination date

In the example above, the post-make-whole-termination penalty is assumed to be 6% on the make-whole
termination date. The penalty rate is reduced to 4% and then to 2% before the bond matures. The penalty
structure is presented by the respective stepwise penalty function. The stepwise function can be
approximated reasonably accurately with the linear function (presented in the diagram by the red dashed
line) which decreases from 6% on the make-whole termination date to 0% on the maturity date.

Bloomberg print screen with a typical callable bond redemption penalty schedule is presented in the exhibit
below.
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Exhibit D.2 A standard penalty structure of a callable bond

Settings ~ Page 1/12 Security Description: Bond
94) Notes B
25 Bond Description 26) Issuer Description
Pages Issuer Information Identifiers
%% Name  PILGRIM'S PRIDE CORP ID Number  EK7883953
13)Reg/Ta’:<o Industry Food & Beverage CUSIP 72147KAC2
14)Covenants Security Information ISIN US72147KAC27
15) Guarantors Mkt Iss Priv Placement Bond Ratings
16)Bond Ratings Country US Currency USD Moody's B1
17)Identifiers REN Sr Unsecured Series 144A S&P BB-
g;?m”%‘?s Coupon 5.750000 Type Fixed Fitch BB
nv Parties .

20)Fees, Restrict Cpn Freq S/A Composite BB-
21)Schedules Day Cnt 30/360 Iss Price 100.00000 Issuance & Trading
2)Coupons Maturity 03/15/2025 Aggregated Amount Issued/Out
Quick Links MAKE WHOLE @50.000000 until 03/15/20/ CAL... USD 1,000,000.00 (M) /
;;;QLRLDQ g[‘;‘gjap Iss Sprd  +330.00bp vs T 2 02/15/25 UsD 1,000,000.00 (M)
M)TDH Trade Hist Calc Type (1)STREET CONVENTION Min Piece/Increment
35)CACS Corp Action PI’iCil19 Date 03/04/2015 2,000.00 / 1,000.00

Interest Accrual Date 03/11/2015 Par Amount 1,000.00
3NCN  Sec News  1st Settle Date 03/11/2015 Book Runner JOINT LEADS
3)HDS  Holders 1st Coupon Date 09/15/2015 | Reporting

| 25 Bond Description 26) Issuer Description
Pages Schedules
D)Fers) it Call Schedule

12)Addtl Info . .. .
1B)Reg/Tax Call with minimum 30 days notice

14)Covenants

15)Guarantors Callable on and anytime after date(s) shown
16)Bond Ratings Date
17)Identifiers 03/15/2020

18) Exchanges 03/15/2021

19)Inv Parties 5

20)Fees, Restrict 03/15/2022
[21)Schedules 03/15/2023

22) Coupons

Quick Links

In the example, the callable bond was issued in March 2015, has a make-whole provision which terminates
in March 2020 and has a redemption penalty of 2.875% applicable in March 2020 which is reduced annually
to zero in March 2023 (two years prior to the bond maturity).

D.2 Putoption

A putable bond can typically be exercised only at certain discrete set of dates. Bloomberg print screen with
a typical putable bond redemption penalty schedule is presented in the exhibit below.
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Exhibit D.3

Standard pay-on-demand terms of a putable bond
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IR 6.015 02/15/28 Corp

25 Bond Description

Settings ~

Issuer Information
Name

Page 1/12 Security Desc

94) Notes B

26) Issuer Description

INGERSOLL-RAND CO

Industry Machinery Manufacturing

Security Information
Mkt Iss
Country US

Rank Sr Unsecured
Coupon 6.015000
Cpn Freq S/A

Day Cnt 30/360
Maturity 02/15/2028
PUT 02/15/20@100.00
Iss Sprd

Calc Type (1)STREET
Pricing Date

Interest Accrual Date
1st Settle Date

1st Coupon Date

Domestic MTN

uUsD
MTNB
Fixed

Currency
Series
Type

Iss Price

CONVENTION
11/21/1997
12/01/1997
12/01/1997
02/15/1998

100.00000

Identifiers
ID Number
CusIP
ISIN
Bond Ratings
Moody's
S&P
Fitch NR
Composite BBB
Issuance & Trading
Amt Issued/Outstanding
UsD 100,000.00 (M) /
uUsD 37,174.00 (M)
Min Piece/Increment

1,000.00 / 1,000.00
Par Amount 1,000.00
Book Runner JOINT LEADS
Reporting

MM1332400
45686XCF8
US45686XCF87

Baa2
212123

SHORT 1ST CPN. SERIES B. 60.17MM PUT @100% EFF 2/15/01.
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32)ALLQ Pricing
33)QRD  Qt Recap
34)TDH Trade Hist
35)CACS Corp Action
36)CF Prospectus
37)CN Sec News
38)HDS Holders

66) Send Bond

| 20)Fees, Restrict

Schedules
Put Schedule
Discrete Put minimum

30 days notice
Date
02/15/2001
02/15/2002
02/15/2003
02/15/2004
02/15/2005
02/15/2006
02/15/2007
02/15/2008
02/15/2009
02/15/2010
02/15/2011
02/15/2012
02/15/2013
02/15/2014
02/15/2015

25 Bond Description 26) Issuer Description

Price;
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000
100.000.

In the example, the put option can be exercised on an annual basis on a specific date (February 15) starting
after approximately three years and 2.5 months after the bond issue date. In many examples of putable
bonds pay-on-demand terms the put option can be exercised only once during the life of the bond. Putable
bonds typically do not have redemption discounts. The main restriction on the pay-on-demand terms is the

timing of exercising the option.
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Appendix E John Hull DerivaGem Tool

In this section we describe the Hull-White DerivaGem tool, which is traditionally used to valuate the interest
rate options. Our tool effectively replicates the numbers produced by the DerivaGem tool.*

E.1 Description of DerivaGem tool

The following parameters are set to estimate the call / put option price (the parameters are illustrated for
the case of Vasicek model with zero mean-reversion parameter):

1. Principal amount (value of the call option is calculated relative to the principal amount. Therefore,
if the principal amount is set equal to 100, then the call option is calculated as a percentage of the
principal amount);

2. Maturity term of the bond (in years);
3. Coupon rate is set equal to the bond coupon rate;

4. Strike price (redemption price of the bond). The strike price is set equal to the principal amount if
there is no penalty for the option prepayment. DerivaGem tool can model only constant penalty
over time. If penalty is x%, then the strike price is setat K = 100 X (1 + x%);

5. Option life (in years). Option life typically equals to the maturity term of the bond minus notice period
of the option minus one day;

6. Short-rate volatility of the market yields. The market yield rates are used to estimate the short-rate
discount factors used in bond valuation. The volatility is estimated based on historical behavior of
the short-rate (3-months) yield series. The credit risk of the yield series is selected to match the
credit rating of the reference bond to take into account the credit risk exposure in the option
transaction (if the bond defaults, then the payouts in the options are set to zero). Alternatively, the
volatility can be estimated using treasury rates (assuming that valuation is performed using treasury
rates) but the default state of the bond and the varying probability of default must be modeled
explicitly. For Hull-White (extended Vasicek) model volatility is estimated as & = V250 x
stdev [dr];

7. Mean-reversion rate. The default mean-reversion rate was assumed to be equal to zero;

8. Tree steps. Generally, is set to four times the maturity term. Factor four corresponds to a 3-month
length of each discrete time period in the interest rate tree;

9. Term structure. Each model of the short-rate (Hull-White extended Vasicek or extended CIR)
produces a term-structure specific to the model. For example, the term structure for the Hull-White

extended Vasicek model, assuming zero mean-reversion rate, is equal to Ry =1, + %ﬁT — %O’ZTZ.
The term structure must be set in the corresponding cells. To estimate the term structure, the drift

parameter 9 and the initial value r_0 must be set. The drift parameter 9 effectively determines the
slope of the term structure. The parameter is calibrated from the term structure estimated as of the

valuation date: 9 = ;(RT —1y) + %azT. Parameter r, is set to match the bond price to the quoted
bond price as discussed below;

10.Quoted Bond Price. If the valuation is performed as of the bond issue date, the quoted bond price
is generally set to par (100) value. The par value must be consistent with the term structure
parameters of the model. We calibrate the parameter r, so that the quoted bond price equals to
bond par value.

3% In most cases our tool produced the option prices with less than 1 bps difference from the DerivaGem tool.
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11.Frequency of the coupon payments is set to semi-annual to match the coupon frequency of
standard USD bonds. Generally, the parameter must match the frequency of the bond coupon
payments;

12.The interest rate model is set to “Normal — American”.

Application of the DerivaGem tool is illustrated in the diagram below.

1 1 -
—p RT=T0+519T—EO'T

& = V250 x stdev [dr:]

\ .

pbullet = par (100)

Rate (%) Vgrtical Axis:

Princigal: 100 Coupon Frequency: 0.25 4.520% Option price -
Bond Life (Year): 10 emiAnnual | [ 05  4.545%
Coupon Rate (%) | 4.930% 1] 4.569% Horizontal Axis:
Quoted Bond Price (/100 [ 100.0143| | 2 4.615% Time to Exercice -
3 4.659%
4 4.700% Minimum X value[  0.01]
Pricing Model: 5  4.738% Maximum X value[  4.99]
[ Normal - American \ - [] Imply Volatility 6] 4.775%
7 4.808%
Strike Price (/100): [ \ 100.00] [ Quoted Strike 8] 4.839% Draw Graph
Option Life (Years): [ \_10.00 o[ 4.868%
Short-Rate Volatility (%): \ 0.87% ® Call © Put 10 4.894%
Reversion Rate (%): [ 0.00% 45
Tree Steps: | 40 Calculate | 4
35
B 3
& 25
Price: | 4.056494 TS L £ 5
DVO1 (Per basis point). | -0.03491| Py Tree | £ s
Gamma01 (Per %): | 0.024911 1
Vega (per %): | 4.917128 o5
0
0.01 1.01 201 3.01 401

Time to Exercise

Estimated call / put price

E.2 Comparing DerivaGem tool to our ac.iOption tool

The list below summarizes the differences between our tool and DerivaGem tool.

» DerivaGem American-Normal model corresponds to the Hull-White (extended Vasicek) model.
DerivaGem American-Lognormal model does not correspond to Hull-White (extended CIR) model
and uses instead o(r;) = o X r; volatility function. The Lognormal model has the properties, which
are similar to the Hull-White (extended CIR) model properties: (i) the set of interest rates is bounded
by zero from below and (ii) the volatility of interest rates is heterogeneous and increases with the
increase in interest rates;
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» DerivaGem tool does not take into account various options and provisions such as (i) interest
deferral or (ii) bond amortization schedule, which can affect materially the results of the option
calculations;

» Only simple redemption penalty structure can be set in the DerivaGem tool. A standard penalty
structure described in the Appendix D cannot be set within the DerivaGem tool;

» DerivaGem tool calculates only the option price but does not calculate the annuity adjustment
factor. Therefore, the option price cannot be converted into the equivalent option premium /
discount.

» Our tool is built as an extension of a generic optimization tool for one-dimensional Markov
processes. It can be directly extended to other types of interest rate models or applied for other
stochastic optimization models. DerivaGem tool can be applied exclusively to Normal and
Lognormal interest rate models.

E.3 Estimation of Normal-American model in DerivaGem

Normal-American model in DerivaGem implements Hull-White (extended Vasicek) model, which is
described by the following equation

drt = (Qt - art)dt + O'th
Mean-reversion parameter is assumed to be zero, @ = 0.

E.3.1 Set of states

The set of states in DerivaGem model is illustrated in the diagram below.

Exhibit E.1  Set of states in Hull-White (extended Vasicek) modelled by DerivaGem

period t period t + dt

The diagram shows the states in periods t and t + dt The states in each period are distributed uniformly
with the distance between each two states equal to

th'i =0 X V3dt
The states in period t + dt are constructed by shifting all states in period t uniformly by 9,dt and adding

two additional states highlighted in the diagram with blue color. A uniform shift of all states by parameter
9.dt ensures that the mean average state increases by 9,dt. A uniform distance o X v3dt between the
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states ensures that no new states (with the exception of the two states highlighted in blue) are created in
period t + dt. Note that this property holds only if the mean-reversion parameter is set to zero.

E.3.2 Transition probabilities

Suppose that the movement in the stochastic component of the process in each period is modelled using
as follows:

V3dt Dy
dW, =10 Pm

_V3dt pd

where p,, pm, and pg (p, + pm +pg = 1) are the probabilities of the stochastic component to move up,
down, or stay the same. To be consistent with the standard Brownian motion, the p,, p,,, and p, probabilities
must satisfy the following system of equations.

{(pu—pd) xV3dt =0
(py + pa) X (3dt) = dt

where the two equations ensure that the mean and the variance of the standard Brownian motion match
the mean and the variance of its discrete approximation with the trinomial tree. The solution to the system
of equations is

E.3.3 Summary

To summarize:

» Hull-White (extended Vasicek) model uses uniformly distributed set of states with the step ov3dt;

» The set of states moves over time consistently with the drift function 9.dt;

» The transition probabilities p,, = %,pm = g and p; = % are set at constant values in each state so
that the volatility of the numeric process is consistent with the volatility of the theoretical process.

E.4 Estimation of Lognormal-American model in DerivaGem

Normal-American model in DerivaGem implements Hull-White (extended Vasicek) model, which is
described by the following equation

dry = (6, — ar,)dt + or.dW,
Mean-reversion parameter is assumed to be zero, a = 0.

E.4.1 Set of states

The set of states in each period t is log-uniform:
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Ttiv1 a
Tt,i

Equivalently the condition implies that the ratio of each two consecutive states is constant. The states in
period t + dt are constructed by multiplying each period t state by the same factor p, so that the ratio of
two consecutive states in period t + dt equals to the ratio in period t. Parameter p, is estimated so that to
match the drift parameter of the interest rate process.

E.4.2 Transition probabilities

The change in the process between periods t and t + dt is described by the following equation

ax(1+p)ry py

1+ p)r,
Tovds = ( P Pm

2 X (1+pIr pa
The average value of the interest rate process in period t + dt equals
Berar = e +9edt = (1 + pe) X pg

Therefore

_ 9.dt
He

Pt

DerivaGem uses the same symmetric transition probabilities p,, = %,pm = g and p; = % in both Normal and

Lognormal models. For the Lognormal model we estimate parameter a which is consistent with the
transition probabilities and respective volatility of the random variable r,, 4. Volatility of the random variable
Ty4q¢ 1S described by the following equation

1 , . 1.n 2 a—1 |1 ,
0(Teyqr) = (1 + pory X gx(a—l) +g><<a—1> =rt+dt><T gx(1+a)=rt+dt><a><\/a

Parameter a is estimated implicitly from the equation as follows:

a—1 1+ a?
x’
a 2
1

Note that function f(a) = ZxJA+a?)isan increasing function of a for a > 1 and therefore the above

a
equation has a single solution. The function f(a) is presented in the diagram below on the a € [1,5] interval.

=0 X V3dt

5.0
4.0
3.0
2.0
1.0
0.0
1.0 15 20 25 3.0 35 40 45 5.0
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Alternatively, for small values of dt, the value of a can be approximated as follows:
a=1+0xV3dt

E.4.3 Summary

To summarize:

» Lognormal model uses log-uniformly distributed set of states with the step r;ﬂ =a~1+ 0 X V3dt;
ti

» The states are multiplied by a constant factor 1 + p, =1 + % over time consistently with the drift
t
function 9,dt and to ensure that the log-uniform distribution of states is preserved,;

» The transition probabilities p, = %,pm = § and p; = % are set at constant values in each state so
that the volatility of the numeric process is consistent with the volatility of the theoretical process.
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Appendix F ac.finance.SRM Tool

In this section we provide a short description of the ac.finance.SRM tool that was developed as part of this
guide and can be downloaded from the alexacomputing.com website. The modelling part of the interest
rate option is implemented in java and the interface is implemented in Excel through custom functions that
are executed by java virtual machine. A detailed description of the tool architecture can be found in
alexacomputing.com.

F.1 Overview

The tool is developed based on the modelling framework for controlled one-dimensional Markov processes.
A controlled Markov process generation requires a specification of the following parameters: set of states,
transition probabilities, discount rates, objective function and other. The parameters are specified in the
ac.SRM tool as follows.

1. Transition probabilities are modelled based on the diffusion process specification of the interest
rate process. Transition probabilities are modelled either using the functional form (derived from
the diffusion process specification) or using the matrix form (if the diffusion process is modelled as
a discrete tree). Default option is to model the transitional probabilities using respective functional
form which describes the normal distribution of transition probabilities.

2. Set of states is modelled either as a tree or a discrete collection of points in a one-dimensional
interval [a, b] (which is the default option). The interval [a, b] and the collection of points are selected
consistently with the transition probabilities to ensure that the probability that the interest rate
process will stay within the interval is close to one.

3. Set of modes is modelled as a binary set {0, 1}, where mode zero corresponds to non-exercised
and mode 1 corresponds to exercised option.

4. Discount rates and discount factors are calculated based on the modelled interest rate process.

5. Objective function is modelled based on the cash flows of the underlying bond instrument.
Currently the tool is limited to modelling four specific processes (but can easily be extended for other interest
rate model specifications):

(i) Two parametric models (Vasicek and CIR); and
(i) Two arbitrage-free models (Hull-White extended Vasicek and Hull-White extended CIR).

The tool implements the above models by modelling the parameters based on the selected model. The tool
also implements model validation, which includes validation of (i) process distribution and (ii) bond bullet
prices.40

Modelling is implemented using the following steps:

1. Estimation of the selected interest rate process parameters.
2. Construction of the interest rate tree.

3. Construction of the interest rate calculator; and

40 The implemented models have closed-form equations for the process distribution and bullet prices, which are compared against the
numerically calculated values. The closed-form equations are summarized in Section 2.2 and Section 3.
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4. Modelling and pricing interest rate derivatives.

The parameters estimation and option valuation steps are implemented and tested independently by
separate java calculator classes. Parameters are estimated using as inputs (i) the historical 3-month yield
series (to estimate the process volatility parameter); and (ii) the yield term structure (to estimate the drift
parameter). The mean-reversion parameter is set by default to zero.

F.2 Parameter estimation

Parameter estimation is a key step to produce reasonable option values. A historical change in the yield
rates (and respective model parameters estimated under different methods) is presented in Appendix H.
This section described how to select the tool inputs to estimate model parameters under different
approaches.

Conceptually, there are two alternative parameter estimation methods:

1. Random walk model. Under the approach, mean-reversion parameter is assumed to be zero,
volatility is estimated based on historical ‘change in yield’ sample, and drift parameter is estimated
based on the yield term structure.

2. Mean-reversion model. Under the approach, mean reversion and drift parameters are estimated
based on historical sample and assumptions on the long-term equilibrium and the volatility
parameter is estimated based on the historical sample of residuals. Mean —reversion is modelled
using HP filter modelling.

F.2.1 Sample parameters

As afirst step, a sample is selected, which is used for the model parameters estimation. Normally, a short-
term (3-months) yield series is selected with the industry sector matching the borrowing entity industry
sector (e.g. Industrial, Financial, or other) and the credit rating of the series matching the tested transaction
credit rating.

After a series is selected for parameters estimation, the following sample parameters must be specified.

1. Sample size parameter n. The larger the sample size, the more significant is the dependence of
the parameters on the market long-term behavior and less dependence on recent changes in the
market. The parameter is set using the ‘sample-size’ keyword.

2. Probability threshold to remove the sample outliers. The changes in the yield series are assumed
to have a normal distribution. If a certain change is too large and not consistent a change in a
normal distribution, the observation is removed from the sample. Outliers are normally identified for
a yield series with daily frequency. The parameter is set using the ‘outlier-prob-threshold’ keyword.

3. Parameter 7, which is the period between consecutive yield series observations applied to estimate
the change in the yields series. The parameter is set using the ‘volatility-sample-period’ keyword.
The larger is the T parameter, the less is the yield series affected by the outliers.

F.2.2 Random walk model

The approach is applied if the value of the ‘state-long-term’ is empty (or zero). The parameters are
estimated as follows under the approach.
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() Mean-reversion. Mean-reversion parameter is automatically set to zero.

(iiy Drift. If term structure parameter is empty, drift parameter is set at zero. Otherwise, drift parameter
is estimated using equations described in Section 3.4. Parameter T in the equations is set using
the ‘term-structure-max-tenor’ parameter key. By default, the parameter is set equal to the tested
loan maturity term. If options are estimated for multiple scenarios, the parameter should be set
consistently across the scenarios (e.g. set to maximum maturity term in the scenarios).

(iii) Volatility. Volatility may be estimated using multiple approaches as discussed in Section 3.3. The
volatility estimation method is set using ‘volatility-method’ key, which values can be set to the
following list: ‘volatility-method-stdev’, ‘volatility-method-ewma’, or volatility-method-garch’. The
default value is ‘volatility-method-stdev’, which corresponds to volatility estimation approach based
on a standard deviation of the historical yield change series. The volatility estimates are described
by equations (3.3) and (3.4).

The parameters estimates can be overridden manually.

F.2.3 Mean-reversion model

The approach is applied if the value of the ‘state-long-term’ is non-empty (or non-zero). The parameters
are estimated as follows under the approach.

(i) Mean-reversion.
(i) Drift.

(i) Volatility. Volatility parameter is estimated based on the HP residuals using the methods described
in the previous section.

F.3  Single option

The option modelling is implemented either (i) as a collection of two functions (where the first function
models option parameters and the second function models the option value); or (ii) as a tool, which
implements detailed steps of option modelling.

The option estimation is performed by executing the following steps:

1. Select the interest rate model and estimate the model parameters;
2. Set the option parameters and estimate the option;

3. Review the model validation output and review the results of the option estimation.

Implementation of the above steps is discussed below.

F.3.1 Option implementation via functions

The implementation via functions was included so that option calculation could be added directly to other
tools. The steps 1 and 2 are implemented respectively as two functions discussed below. Validation of the
function implementation was performed by comparing the functions output against the tool output.

Function for model parameters estimation

Function for option value calculation
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F.3.2 Option implementation as a tool

Below we show the tool print screens to illustrate the application of the tool. The example is illustrated for
the Hull-White (extended Vasicek) model. The tabs highlighted in yellow are the input tabs.

1. Input tabs.

» Input tabs (‘ylds’ and ‘sample’) are highlighted in yellow. The ‘ylds’ tab includes the data on the
yield term structure and historical 3-month yield sample.

» The key model inputs are set in the ‘Parameters’ and ‘Summary’ tabs. Auxiliary input parameters
are set in the ‘calc’ tab. Specifically,

» The objective of the ‘Parameters’ tab is to estimate the underlying stochastic model parameters
such as process volatility and drift parameters;

» The parameters, which are specified in the ‘Summary’ tab, describe the terms and conditions of
the tested transaction.

» Parameters set in other tabs specify the implementation of the interest rate tree and specify
whether certain parameters of the model are calibrated to ensure the par value of the bullet
bond.

A more detailed description of the model parameters is provided below.
2. Parameters “params” tab.
The process parameters on the tab are estimated as follows:

» The volatility parameter is estimated based on the sample of short-term (3-months) yield rates
with the credit rating matching the credit rating of the tested transaction. The sample size of the
3-month yield sample is specified using the sample-size keyword. The estimated volatility
parameter can be manually overridden by the user by specifying the custom value in the yellow
highlighted cell. By default, the sample size parameter is set to 250 (approximate number of
business days in a fiscal year). The tab includes a graph with volatility estimated for different
sample sizes. The graph shows how materially the volatility depends on the sample size;

» The drift parameter is estimated using the yield term-structure and the equations described in
Section 3.4. For Vasicek and CIR models the estimated constant drift parameter can be
overridden manually by the user. The estimated parameter depends on the parameter T which
is set using the term-structure-max-tenor parameter. By default, the parameter is set equal to
the tested transaction maturity term.

For the Hull-White (Vasicek) and Hull-White (CIR) models the estimated drift parameter is a
function and therefore cannot be overridden.

» Mean-reversion parameter is by default set to zero.

The tab with estimated model parameters is shown in the diagram below.
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Exhibit F.1

ac.iOption tab with parameters estimation output
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21-4pr-21 330% Calculator pararneters javautil LinkedHashap@Sun, 27 Jun 2021051312176, 7674 n
20-Apr-21 3412
1-4pr-21 342% B. Parameter calculator
16-4pr-21 3275 SAk pararmeter calculator jeconkr.finance Hw.lib.ch23_srm.caloul ator paramneter. Caloul atorParametery asicek@Sun, 27 Jun 202109:74: 26:506.. 164150476245,
TB-4pr-21 2.85% SAM parameters srm-params javautil LinkedHashhap@Sun, 27 Jun 2021051312185, 6576 E
W-4pr-21 2967 Pt RN ] java.util Arraplish@Sun, 27 Jun 2021 03:10:45:324. 5842263354 B2 Estimaead foeor fo ovenciogy
B-fpr-2l 3843 RTINS G AR CESE VAR (7 sy et 24
12-4pr-21 3612
9-Apr-21 2.84% C. Override manually model parameters
8-Apr-21 4122 SPAbA pararneter calculstar jgconkr finance Hw lib.ch23_srem calculstor pararneter. CaloulatorPararneteryasicek@S0n, 27 Jun 202109:14: 26:510. 446086057413
7-Apr-21 4122 SRM parameters sTm-params javautil.LinkedHashiap@Sun, 27 Jun 202709:12:12:189..8768 E
6-Apr-21 3932

3. Summary (“summary”) tab. The tab with the option parameters and option estimation output is
shown in the diagram below.

The tab includes both the input parameters and the estimation output. The following input

parameters are used:

» Terms of the testes transactions such as valuation date, credit rating, maturity term, length of
the tree step (dt), and coupon payment parameters (fixed coupon rate and coupon payment

frequency).

The valuation date and credit rating are specified for reference purpose only. The yield term
structure and 3-month yield sample (used for volatility and drift parameter estimation) must be
consistent with the valuation date and credit rating parameters.

Default length of the interest rate tree is set at dt=0.25 to match a 3-month period.

By default, the coupon rate is replaced with the estimated coupon rate which corresponds to the
par bullet value of the bond.
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Semi-annual coupon frequency is used as a default value to match the frequency of the US$
bond yield rates (SA frequency, 30/360 day count).

» Bond redemption premium schedule.

» Other terms which effect the bond cash flows such as bond amortization schedule or bond
interest payment deferral.

The following output is presented in the tab:

» Call/put option fixed price, annuity adjustment factor, and call/put option annual premium. The
annual premium is used to adjust the yields on callable bonds;

» The price of the callable/putable and bullet bonds. The call/put price is calculated as the
difference between the prices of the callable/putable and the bullet bonds;

» Results of the estimation validation procedure which include: comparing the numerical and
theoretical (i) bond bullet prices; (i) terminal state distribution mean; and (iii) terminal state
distribution standard deviation. In addition, the validation procedure estimates the implied
drift/volatility parameters based on the numerical terminal state distribution and compares the
implied values to the values used in the model. The purpose of the validation procedure is to
test that (i) the numeric tree was constructed correctly and to test that (ii) the backward recursion
in the calculator (applied to calculate bond prices) is implemented correctly.

The tool tab is presented below.

Exhibit F.2

ac.iOption tab with the output of the option estimation

TAB: SUMMARY OF THE RESULTS

‘Model Parameters
Parameter

Model Output Summary

BOND SCHEDULES

Bond option parameters

Interest rate model
Valuation date

credit rating

maturity term

coupon-rate
coupon-frequency

dt

drift parameter (8)
mean-reversion parameter (a]
volatility (o]

principal-amount

number of periods

N/A
0.000%
0.759%

100

20

Calibrated from the term structure
Default value is set to zero

Estimated using historical data sample

Bond principal amournt
Number of tree steps

Value Deswription Parameter Value  Parameter Value Desaription
Hull-White, extended Vasicek Bond actual value -99.10  option call  Option type (put or call)
1-Jan-19 Bond bulletvalue -100.00
8B- Bond wansaction-specific credit rating  Bond option value 0902 Bond redemption premium / discount
50 Bond maturity term Year Period  Value  Description
440% Calibrated coupon rate 0.25 1 0.00%  Bond redemption premium in period t=1
2 Coupon payment frequency Annuity adjustment factor [AAF) 2774 25 10 0.00%  Bond redemption premium in period t=10
025 Length of the tree step (in years) Bond option premium / discount 0325 50 20 000%  Bond redemption premium at maturity

redemption-premium-schedule
java.utilLinkedHashMap@Tue, 5 Fe

Redemption premium if option is exercised

Model Validation Summary

Zero-price bond

Terminal distribdfion parameters

implied model porameters

Model type Bullet price Terminal mean | Terminal stdet Impliedmean’ | Implied stdév
Numeric model 100.00 6.47% 169% 0.68% 0.76%
Theoretic model 99.70 6.47% 170% 0685, 0.76%
Difference 030 0.00% -0.01% 0.00% 0.00%

Bond amortization schedule
Mear Period Value

Description

025 1 0%
175 7 0%
3.5 14 0%
50 20 100%

amortization-schedule
java.utilLinkedHashMap@Tue, 5 Fe

% of bond amortization in period t=1
% of bond amortization in period t=7
% of bond amortization in period t=14
% of bond amortization at maturity

Bond amertization schedule

Markov pracess models
Vasicek

Cox-Ingersol I-Ross (CIR)
Hull-White, extended Vasicek
Hull-White, extended CIR

Interest rate options
call
put

Interest deferral schedule

Parameter Value Description
interest deferral period 0 The latest coupon payments deferral period
is compounded 1 1if deferred interest is compounded (0 otherwise!
Controls
CtrisShitsC Ctri+ShitsD Cri+ShitsS Ctrl+ShitsV
CALCULATE DISABLE SET RANGES SAVE AS VALUES

4. Calculator tab

The calculator tab specifies the java functions which are used to construct the option tree model
and the option tree calculator. The tab also includes some auxiliary but important parameters. The
parameters are set to default values by the tool by can be modified by the user on the tab. The list
of auxiliary inputs includes the following parameters:

Konstantin Rybakov

Interest Rate Options

Page 68 of 89



Tree state parameters specified by dx-down, dx-up, X-min, X-max and X-count keys. The
parameters specify (i) the distance between the neighbour states; (ii) the minimum and
maximum states; and (iii) the number of states used to model the tree;

The adjust-to-par parameter specifies whether the bond fixed coupon rate specified by the user
is replaced by the model-estimated rate to ensure that the bullet bond is values at par. In a
typical case, the option is evaluated at the bond issue date and therefore the bullet bond must
be priced at par. If however the option is valued at a date different from the issue date, then the
parameter should generally be set to zero.

The initial state of the tree model is set equal to the 3-month yield rate of the term structure.

The tab also includes the parameter which specifies whether a tree or a grid structure is sued
to construct the tree. The grid structure assumes a uniform set of states in each period t.

Output tabs. In addition to the ‘summary’ tab the output tabs include(i) ‘cf’ tab with the bond cash
flows; (ii) ‘charts’ tab (presented below); (iii) ‘value’ tab with the tree of the callable/putable bond
values; (iv) ‘bullet’ tab with the tree of the bullet bond values; (v) ‘action’ tab with the option exercise
/ not exercise action tree; and (vi) ‘D’ tab with the option tree state distribution probabilities.

The output of the ‘charts’ tab is presented in the exhibit below. The tab shows two graphs (i) the
terminal state distribution; and (ii) the state tree including state bounds, fixed (calibrated) bond
coupon rate; average yield rate; and the boundary between the option exercise / not exercise
actions.

The exercise / not exercise boundary increases over time and converges to the bond coupon rate.

Exhibit F.3 ac.iOption tab with the output charts

TAB: CHARTS
State distribution at maturity Option exercise action switch state Charts
number of pericds 21 Mean: 6.47% dt 0.25 State distribution at maturity
number of observations 40 StDev:  1.69% 5.9%
=
g 5.7%
ericd period action mean- coupon min max B
# state prob Fearsj 'F':ndexj switch numeric ra:e state state _g "f"“f
Ly | state = 3.2%
1 0.6% 0.01% 3.07% 4.40% 3.07% 3.07% _E 1355
2 0.9% 0.03% 0.25 1 2.80% 3.07% 4.40% 0.00% 4.68% E 0.6%
£
3 12% 0.05% 0.50 2 280%  307%  4.40% 0.00%  6.29% T T i o i o )
4 155 0.08% 075 3 2 80% 3.30% 2.40% 0.00% 7.90% = ST 06% 1L7% 2.8% 3.9% 4.9% 60% 7.1% B2% 9.2% 10.3%
5 17% 0.13% 100 4 3.07%  353%  440% 0.00%  951% market short-term yield rate at maturity
6 20% 0.20% 125 5 3.07% 3.57% 4.40% 0.00% 11.12%
7 21.3% 0.30% 150 6 2.80% 3.62% 4.40% 0.00% 11.12% . . . N .
g 25% 043% 175 7  280% 3.66% 440%  000% 1112% Option exercise action switch diagram
L] 28% 0.61% 200 8 280% 371%  440%  0.00% 11.12% action switch state s - numeric coupon rate
10 3.1% 0.85% 225 9 3.07% 4.17% 4.40% 0.00% 11.12%
11 3.3% 1.15% 250 10 3.33% 4.64% 4.40% 0.00% 11.12% = 1%
12 3.6% 1.52% 275 11 3.60% 5.10% 4.40% 0.00% 11.12% E
13 359% 1.96% 3.00 12 4.14% 5578, 4.40% 0.00% 11.12% £ 10% | Do not exercise call |
14 4.1% 2.46% 3.25 13 4.14% 5.46% 406 Q006G 1 1. 1296 E g%
15 4.4% 3.02% 3.50 14 4.14% WNSE5% 4.40%, 000% W11323% + )
16 47% 3.62% 3.75 15 3.87% 5.25% 440% 0.00% S1180% % 63 /—\~/
17 49% 429% 400 16 3.87% 5.14% 4.40% o0~ 1 199, £ % :
18 5.2% 4.80% 415 17 414% 547% 4.40% W00%AF11.12% = ) N
19 5.5% 5.33% 450 18 414% 5.80% 4.40% 000% 11.12% E 1%
20 5.8% 5.77% 475 19 4.41% 6.14% 4.40% 0.00% 11.12% 1%
21 6.0% 6.10% 5.00 20 6.47% 4.40% 0.00% 11.12% 123 456 7 5 910111213 1415 16 17 18 19 20
22 6.3% 6.28% .
eriod
23 6.6% 6.31% P
24 6.8% 6.18%

6. Other tabs. Other tabs include the ‘config’ and ‘validate’ tabs. The ‘config’ tab includes a full list of

input and output parameter keys. The ‘validation’ tab presents more detailed results of the model
validation analysis.
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F.4  Sample of options

In a typical IRB analysis, not only the tested transaction is a callable transaction but many CUTSs, included
in the sample to estimate the arm’s length interest rate, are also callable. Therefore, the yield rates on the
CUTs must also be adjusted.

A natural approach to calculate a sample of options is to create an option calculator for each individual
option. Note however that option estimation is in general both time and memory intensive task. Therefore,
calculation of a sequence of options may be time and memory intensive process.

The sample option calculator tool, included as part of ac.iOption package, makes simplifying assumptions
on the CUTs prepayment options. The assumptions ensure that the option tree constructed for the tested
transaction can also be applied for the sample CUTs.* The following simplifying assumptions are made:

1. Maturity term. Remaining maturity term for each CUT (denoted as T;) is set equal to the maturity
term of the tested transaction (denoted as T);

2. Volatility and drift parameters. The same parameters are used as the volatility and drift parameters
applied for the tested transaction. (Note that parameters are estimated based on the credit rating
of the tested transaction);

3. Coupon rate. The coupon rate is calibrated to ensure that the bullet value of the bond equals to the
par value;

4. Penalty structure. The penalty structure of each CUT is modified as follows:

» The remaining duration of the make-whole provision is rescaled to match the modified maturity
term of the CUT. If T/™ denotes the remaining duration of the make-whole provision, then the
modified duration is calculated as follows: T/™ = T/™ x T1

» The post-make-whole penalty structure is typically a linear function. The redemption penalty is
reduced fromx; (which is applicable at the make-whole termination date) to zero (which is
applicable at the maturity date). The value x; is modified to ensure that the slope of the penalty
structure prior to and after adjustments are the same. The modified penalty %; is calculated as

7MW
T-T]

T-T™"

follows: %; = x; X

Effectively the assumptions imply that a callable tested transaction and CUT are comparable to each other
in terms such as maturity, coupon rate, and interest rate process parameters and the difference in the
tested transaction and CUT options is due only to differences in the penalty structure.*

The sample option calculator recalculates the bond cash flows for each individual CUT based on the CUT
prepayment penalty structure and then recalculates the CUT option value and respective option annual
premium. The yield on the callable CUT is adjusted downward by the option premium value.

41 Construction of the option tree is the most time and memory intensive part of the option valuation process.

42 |f the credit ratings and tenor terms of the CUTs are selected so that to match the terms of the tested transaction, then the
assumptions do not change significantly the CUTs call option adjustment. However, the assumption that the CUTs are priced at par
on the valuation date of the tested transaction is generally not true. The exact estimation of the CUTs prepayment option may result
in the elimination of some of the CUTs from the sample due to the fact that the CUTs should have been prepaid according to the
option valuation model. Note that the spread between the yield and coupon rate is one of the criteria which is applied in sample
screening.

Konstantin Rybakov Interest Rate Options Page 70 of 89



The objective of the approach is to avoid an in-depth assessment of each individual CUT prepayment
provisions. If both the CUT and the tested transactions are callable, then the yield on the CUT is either not
adjusted or adjusted (partially or fully) only if the penalty structure of the CUT prepayment option makes it
expensive to exercise the option.

F.5 Pre-calculated options

An alternative approach to estimating a sample of the options is to create a single table (database) of
options pre-calculated for a range of different option parameters. Each specific option is calculated then by
(i) matching the option parameters to the parameters included in pre-calculated option database; and (ii)
interpolating the matched option prices. The following parameters determine the option value:*

Volatility parameter;

Drift parameter;

Maturity term;

Make-whole-termination date;

o M~ w DN PR

Post-make-whole redemption penalty;

6. Difference between the coupon and the yield rates;
In total there are seven parameters that determine the value of the option. Suppose that five different values
are assumed for each parameter. Then the total number of different pre-calculated options is

n =57 =78,125

For each specific set of parameters, k = 27 = 128 neighbor parameter sets must be identified, and the
option value is estimated by interpolating the 128 pre-calculated option values for the neighbor sets of
parameters.

4 The list includes only the parameters which have the most material impact on the option value.
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Appendix G Examples

XX

G.1 Volatility estimation

Volatility estimate based on historical short-term yield data can potentially be very sensitive to the yield
outliers. To illustrate it by an example, we provide below an example in which the volatility is estimated
based on August 2013 — August 2014 historical B rated one-year* yield series as reported by Reuters. The
yield series is shown in the exhibit below.

Exhibit G.1 Short-term yield series used in volatility estimation

One-year B rated yield rate, Reuters

5.0

45 R
4.0 ]

3.5
3.0 L—————-
2.5

2.0
Aug 13 Oct 13 Dec 13 Feb 14 Apr 14 Jun 14

The series shows a large downward jump in the yield rates from 4.25% on 7 May 2014 to 2.96% on 8 May
2014. The jump is due to the change in the Reuters yield estimation methodology and does not represent
actual volatility in the yield rates. Reuters adjusted materially all sub-investment yield series on that date.
The exhibit below shows how the downward adjustment affects the estimated volatility parameter. The
volatility series estimated for different sample sizes is presented in the exhibit below. The left panel shows
the volatility prior to removing the yield outlier and the right panel shows the volatility after removing the
outlier.

Exhibit G.2  Volatility prior to (left panel) and after (right panel) removing the outlier

Volatility (with outliers) Volatility (without outliers)
3.00% 0.14%
2.50% 0.13%
2.00% 0.12%
1.50% 0.11%
1.00% 0.10%
0.50% 0.09%
0.00% 0.08%
21 41 61 81 101121 141 161 181 201 221 241 1 21 41 61 81 101121 141 161 181201 221241

The volatility graph on the left panel shows that there is an outlier that have a material impact on the
estimated volatility. The estimated volatility parameter based on a sample of 250 business days was 1.36%.

4 Reuters did not report in 2014 the yield series with maturities shorter than one-year.
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The volatility graph on the left panel shows the volatility estimate after removing the yield outliers. The
volatility was reduced from 1.36% to 0.14% after four outliers were removed from the sample.*

The filter is implemented as follows:

1. Estimate the mean and standard deviation of the sample used in volatility estimation. Estimate the
critical value such that the probability of a sample absolute value to exceed the critical value is
smaller than some fixed alpha value (by default set at « = 107°);

2. Remove all elements from the sample which absolute values exceed the critical value.

3. If outliers were identified, repeat step 1 until no new outliers identified or maximum number of
iterations is exceeded (current maximum number of iterations is set at 10).

G.2 Transition probability estimation

The problem with the direct estimation of the transition probabilities is illustrated in the diagram below. The
problem is illustrated with a trinomial tree example

period t + dt

The red lines in the diagram show the theoretical movement in the interest rate with u = 9,dt upward drift.
The black circles show actual discrete states used in the numerical modelling. At step one, prior to the
transition probability adjustment, the red states are matched to the closest black sets and the probabilities
are calculated based on the theoretical u and o values estimated at state r, ;. After matching the red states
to the actual black states, the drift u = 9.dt in the interest rates is effectively reduced to zero. The impact
on the volatility can also be generally material. Therefore, to ensure consistency with the theoretical model,
the probabilities in the black states must be adjusted. Under the contraction mapping transition probability
adjustment approach, the theoretical mean and standard deviation parameters u and ¢ are replaced with
the adjusted values i and & such that the mean and standard deviation estimated based on the actual
(black) discrete states match the theoretical u and o parameters.

The results of the transition probability adjustment are illustrated for the two alternative approaches
discussed in Appendix B.3. The example was estimated using the Hull-White (extended Vasicek) model

4 In practice volatility estimated based on Bloomberg series typically exhibits a much more regular behavior compared to the volatility
estimated based on Reuters yield series. This is due to the fact that Reuters estimated the yields as Treasury rates plus risk spread,
where the risk spread could be constant for an extended period of time and periodically adjusted materially up or down. As a result,
the volatility estimated based on Reuters’ yields can often be measuring the volatility of Treasury rates and be very low. (Since the
last time we used Reuters’ yields in the option valuation analysis, Reuters updated their methodology for yield series estimation. We
have not tested the impact of the change in the methodology on the results of volatility estimation).
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with the following parameters: « = 0,0 = 0.76%. The drift parameter was estimated based on the increasing
term structure of yield rates with the equivalent constant drift parameter equal to 9 = 0.68%.

Theoretical and numerical model parameters for unadjusted transition probabilities are described in the
exhibit below.

Model name Mt or vl o

This numerical model 3.19% 1.52% 0.03% 0.68%
Hull-White, extended Vasicek 6.47% 1.70% 0.68% 0.76%
Difference -3.28% -0.18% -0.66% -0.08%

The example illustrates that if the transition probabilities are unadjusted then the impact on both mean and
standard deviation can be material (typically the impact on the mean is larger than the impact on standard
deviation). In the example the drift parameter was reduced from 9 = 0.68% to a value close to zero (9 =
0.03%) consistently with the above diagram. The call option premium was estimated respectively at
call premium = 0.57%.

Next we adjusted transition probabilities using the “contraction mapping” approach. The numeric and
theoretical parameters are described in the exhibit below.

Model name Wt or vl o]

This numerical model 6.47% 1.69% 0.68% 0.76%
Hull-White, extended Vasicek 6.47% 1.70% 0.68% 0.76%
Difference 0.00% -0.01% 0.00% 0.00%

After adjusting the transition probabilities, the state distribution of the numerical model matches closely the
theoretical state distribution. With the positive drift parameter, the call option premium reduced to
call premium = 0.33%. Due to precision, efficiency and robust performance, the transition probability
adjustment based on contraction mapping estimation is applied as the default approach in the interest
option valuation tool.

For completeness of the example exposition, we demonstrate also the performance of the transition
probability adjustment algorithm based on solving the probability deviation minimization problem (described
in the Appendix B.3). The numeric and theoretical parameters are described in the exhibit below.

Model name Mr or vl o

This numerical model 6.32% 1.71% 0.65% 0.76%
Hull-White, extended Vasicek 6.47% 1.70% 0.68% 0.76%
Difference -0.15% 0.01% -0.03% 0.00%

The call option premium was respectively estimated at call premium = 0.35%. The deviation of the numeric
parameters from the theoretical values is reasonably small. The deviation is primary due to the fact that in
states with low probability, the adjusted probability moves into the negative values zone in which case it is
capped by zero value. Capping the adjusted probabilities with zero floor produces an error in mean and
standard deviation matching algorithm. In most cases the effect is not material. Overall however the
approach showed to be less accurate, less time efficient, and less robust compared to the contraction
mapping approach.

G.3 Call option

The section presents standard output of the option valuation tool and discusses how the output should be
interpreted.
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G.3.1 Hull-White (extended Vasicek)

The example discussed in this section was described in Appendix F.3. The example was estimated using
the Hull-White (extended Vasicek) model with the following parameters: a = 0,0 = 0.76%. The drift
parameter was estimated based on the increasing term structure of yield rates with the equivalent constant
drift parameter equal to 9 = 0.68%. The maturity term was set at 5 years. The credit rating of the underlying
bond transaction is Ba3/BB-.

G.3.1.1 Model estimation

The value of the call option premium was estimated at call premium = 0.33%. The output of the call option
estimation tool is presented in the diagram below.

Exhibit G.3 Output of option estimation tool

Option exercise action switch diagram
——a— action switch state =~ === mean - numeric coupon rate
T 12%
Q2
> 10% .
£ Do not exercise call
e
] 7%
*:‘
t 50/ /\/
o (]
9 .
: 3% / .
g Exercise call
= 1%
£
1%
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
period

The coupon rate in the model was calibrated at 4.40%, 9 bps lower than the 5-year MYCA rate equal to
4.49%. The coupon rate is shown by the green dashed line in the diagram. The expected short-term rate
(shown with the blue line) increases in the model from 3.07% (3-month BB- yield rate reported by
Bloomberg) to 6.47%. The increase in the short-term rate is consistent with the increasing term structure
of the yield rates. The short-term rate needs to increase above the 5-year BB- yield rate (equal 4.49%) so
that the 5-year rate can be replicated as a sequence of increasing short-term rates.

The call option is exercised below the red line. As the bond outstanding term to maturity approaches zero,
the bond is exercised when the yield rate is below the bond coupon rate. The black line shows the bounds
of the interest rate state set.

Suppose now that the option has a 3% penalty if exercised in the first 2.5 years and zero penalty afterwards.
The diagram for the option with the penalty provision is shown below.
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Exhibit G.4 Output of option estimation tool

Option exercise action switch diagram

——a— action switch state =~ ——s—— mean - numeric coupon rate

12%

10% .
Do not exercise call

7%

5% /\/
3%
1% ~~

-1%

market short-term yield

12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
period

The option premium is reduced to call premium = 0.10%. The diagram also shows that the option is never
exercised when the penalty is close to expiration. After the penalty is reduced to zero, the diagram becomes
the same as the diagram with no penalty.

G.3.1.2 Model validation

Model validation based on the terminal distribution parameters and implied parameters was illustrated for
the example in the Appendix F.3. [Zero-coupon price validation] In this section we show how the results are
validated directly against the output of the DerivaGem tool.

The output of the DerivaGem tool is presented in the exhibit below. As discussed in Appendix E.1, the
coupon rate was calibrated so that the quoted bond price was equal to par.

Exhibit G.5  Validation of option estimation: DerivaGem output

Time (¥rs) Rate (%)

Principal: 100 Coupon Frequency: 0.25 3.066%
Bond Life (Years): 5 0.5 3.066%
Coupon Rate (%): | 4.4840% 1 3.180%
Quoted Bond Price (/100): | 100.0154| Calibrate to par 2 3.394%
3 3.802%
4 4.181%
Pricing Model: 5 4.494%
| Mormal - American - | [ tmply Volatility 6 4.788%
7 5.302%
Strike Price (/100): 100.00 Quoted Strike 8 5.498%
Option Life (Years): 5.00 9 5.668%
Short-Rate Volatility (%): 0.76% @ call 3 Put 10 5.843%
Reversion Rate (%): 0.00% 15 6.578%

Tree Steps: 20 Calculate

Price: [ 0.920167 X 2774
Display Ti

DVO1 (Per basis point): | 0.02123 EEEy lhss premium 0.3318

Gamma01 (Per %): | 0.033507

Vega (per %): | 1.794018
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The estimated call option premium call premium = 0.33% matches very closely the premium (0.33%)
estimated in our tool and presented in Appendix F.3. We used consistently the DerivaGem tool to validate
the results of the option calculation and in each case the difference between the DerivaGem tool and our
tool would not exceed 1-2 bps when applied to Vasicek or Hull-White (extended Vasicek) model.

After further review of the DerivaGem output we observed the following facts.

» Estimated terminal distribution. The mean and standard deviation of the terminal distribution in
DerivaGem and out tool were respectively yu = 6.12%,0 = 1.70% and u = 6.47,0 = 1.69%. We
observe certain discrepancy in the estimated mean parameter. The average drift parameter was
estimated at 9 = 0.61% while in our tool it was estimated at 9 = 0.68%.

» Drift parameter. Estimated drift parameters were different. The diagram that shows two cumulative
drift functions estimated in DerivaGem and our tools.

Exhibit G.6 Cumulative drift estimated in DerivaGem and out tool

= DerivaGem Our tool

4.00%

3.00%

2.00%

1.00%

0.00%
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

G.3.2 Hull-White (extended CIR)

To compare the result under Hull-White (extended Vasicek) and Hull-White (extended CIR) models, we run
the model with the same parameters as described in the previous section but assuming the Hull-White
(extended CIR) model specification.

G.3.2.1 Model estimation

Under the Hull-White (extended CIR) model, the estimated volatility parameter is ¢ = 5%. Note that the
actual volatility g, = o % \/Ft ranges between 0.88% and 1.28% along the average path of the interest rates
and is higher than the ¢ = 0.76% estimated in the Hull-White (extended Vasicek) model. The call option
premium is also respectively higher and is equal to call premium = 0.26%. The call option diagram in the
Hull-White (extended Vasicek) model is similar to the diagram in the previous example.
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Exhibit G.7 Output of option estimation tool

Option exercise action switch diagram

—s— action switch state ———a— mean - numeric coupon rate
] 17%
2
> 14%
£ .
5 1% Do not exercise call
3
v 8%
o
< Y /\/
P e —
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Due to higher volatility of the interest rates (especially in the area of high interest rates), the bounds of the
interest rate states set is wider compared to the state set constructed for the Hull-White (extended Vasicek)
model.

To test further comparability of the Hull-White (extended CIR) and Hull-White (extended Vasicek) models,
we overrode the historical volatility parameter ¢ = 5% with a lower value o = 4% (so that the actual volatility
oy =0 X \/Tt ranges between 0.70% and 1.02% along the average path of the interest rates). The call option
premium reduced to call premium = 0.19% and was comparable to the call option premium (0.20%)
estimated under the Hull-White (extended Vasicek) model.

[Sensitivity to interest rate]

G.3.2.2 Model validation

Note that the DerivaGem tool does not implement the Hull-White (extended CIR) model and therefore
cannot be used to validate the estimation output of the Hull-White (extended CIR) model. Therefore, the
numerical model can be validated only against the respective theoretical model.

G.4 Putoption

The put option estimation is illustrated with the same example of Hull-White (extended Vasicek) model that
was described in Appendix F.3.

G.4.1 Hull-White (extended Vasicek)

In this section we compare the results of the put option calculation against the results of call option
estimation for the Hull-White (extended Vasicek) model.

G.4.1.1 Model estimation

The value of the put option discount was estimated at put discount = 1.10%. The output of the call option
estimation tool is presented in the diagram below.
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Exhibit G.8 Output of option estimation tool

Option exercise action switch diagram

——8— action switch state =~ === mean - numeric coupon rate
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period

As can be observed from the example, the put option discount is significantly higher than the call option
premium. This is typically the case when the term structure of the yield rates is increasing. The term
premium between the one-year and five-year rates in the example is 1.22%. Therefore, after adjusting the
five-year interest rate for the presence of the put option discount, the term premium component in the five-
year rates is reduced from 1.22% to 0.12%. The arbitrage argument, which explains why the put option
discount is generally large, is provided in the next section.

G.4.1.2 Put option and term premium arbitrage.

Suppose that F is a financing subsidiary that receives funds from the corporate group parent P and lends
them to borrowing subsidiaries Bi. Then the subsidiary F can apply the following lending strategy to
generate arbitrage profits (illustrated in the diagram below).

Exhibit G.9 Illustrative example of the term premium arbitrage

B1

Bn

Long-term  (10-year)
i financing at fixed 6%;

Short-term (1-
i year) financing at

i fixed 1%

Pay-on-demand (put)
option for 3% discount

To match the funds received from the borrowers Bi and repaid to the parent P, the financing subsidiary F
exercises the required number of put options whenever the debt to the parent P is due.

In the example, the financing cost for the subsidiary F is 1% and the interest income is 3% (= 6% - 3%).

The profit 2% (= 5% - 3%) is generated due to a risk-free arbitrage produced by the term-premium trading.
The example illustrates the following points.
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Note! The example has an important implication in transfer pricing analysis. The intercompany loans are
often issued as on-demand loans without specifying an exact maturity term of the loan. The on-demand
term of the loan implies that the repayment of the loan principal amount can be demanded by the lender at
any time without any penalties. Because the maturity term of the loan is not specified, it can be treated both
as a short-term or a long-term loan. The assumption about the loan maturity will generally have a very
material impact on the estimated interest rate (since term premium is one of the key factors that affects the
interest rate estimate). However, since on-demand feature on the loan is interpreted as the presence of the
put option, the adjustment of the interest rate for the presence of the put option will reduce very materially
the term premium component of the interest rate. In practice on-demand loan can be treated as effectively
a short-term loan.

G.4.1.3 Model validation

The estimated put option discount put discount = 1.09% matches very closely the discount (1.10%)
estimated in our tool and presented in Appendix F.3. DerivaGem and our tool produce closely matching put
and call option price numbers in the case of Hull-White (extended Vasicek) model.

G.5 Debt Refinancing

Example below shows that as the financing cost is decreasing materially for a company, the company has
a strong incentive to exercise the call option (even if the prepayment option includes a penalty structure)
and to refinance its debt at a lower cost. Therefore, presence of the call option in an intercompany loan
agreement can potentially represent a transfer pricing risk. Tax authorities may argue that while the
interest rate on the loan was at arm’s length on the loan issue date, the interest rate may not be at arm’s
length over the life of the loan if the loan refinancing could result in lower financing costs. Therefore, in the
presence of the call option the market interest rates should be monitored on a regular basis to ensure that
the borrower does not have an incentive to exercise the prepayment option. Including a penalty structure
mitigates partially the loan prepayment transfer pricing risk.

Example describes a debt refinancing history of Compass Minerals International Inc. (CMP) based on the
respective Bloomberg data. In May 2009 CMP issued a 10-year US$100 million callable senior unsecured
note. The call option becomes effective starting in June 2014 (five years after the issue date) with the initial
penalty equal to 4% which is reduced then uniformly to zero in 2017 (two years before the note maturity
date). The coupon rate on the note is fixed at 8%. The note transaction was rated by Moody’s at B+ on the
note issue date.

In September 2010 the note was upgraded by Moody’s to Ba2 rating. The yield rates on sub-investment

debt reached its peak in 2009 and then decreased significantly over time. The history of interest rates
(represented by Bloomberg 10-year B rated yield series) is presented in the exhibit below.
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Exhibit G.10 History of yield rate movement

BFV USD US Industrial B 10 Year
15.0
10.0
5.0
Apr 05 Apr 07 Apr 09 Apr 11l Apr13

As soon as the note becomes callable in June 2014, CMP exercises the call option and repays the note
(including the 4% redemption penalty payment). Contemporaneously with debt repayment, CMP issues a
new 10-year US$250 million senior unsecured note (with the make-whole provision which termination date
is set two months prior to the note maturity date). The coupon rate on the note is fixed at 4.875%. The note
transaction was rated by Moody’s at Ba2 on the note issue date.

This example illustrates that the following factors affect the prepayment risk.

» Significant decrease in the market interest rates;

» Improvement in the tested entity creditworthiness;

» Decrease in the remaining maturity term of the loan
In the example, the 8% note with five-year remaining effective maturity was refinanced with the 4.875%
note with 10-year maturity term.

G.6 Prepayment risk

G.6.1 Prepayment risk adjustment

Prepayment risk may potentially be an important factor, which may affect materially the yield rates on the
bonds. An exhibit below illustrates a large variation in the yields on the binds issued by the same entity.
The variation is explained by a difference in the bonds coupon rates and respectively large difference in the
bonds prepayment risk.

iRedemption% Coupon

ISIN code Elssuer Maturity benalty | rate Yield rate*®
US629377CEO3 NRG ENERGY INC | 15-Jan-28 15-Jan-23 2.88% 5.750 4.453
US629377CQ33 NRG ENERGY INC : 15-Feb-29 15-Feb-24 1.69% 3.375 3.570
US629377CH34 NRG ENERGY INC | 15-Jun-29 15-Jun-24 2.63% 5.250 4.235
US629377CR16 NRG ENERGY INC | 15-Feb-31 15-Feb-26 1.81% 3.625 3.720
US629377CS98 NRG ENERGY INC | 15-Feb-32 15-Feb-27 1.94% 3.875 3.904

In the example, the bonds with higher remaining maturity term have almost 1% lower yield rates. The
difference is explained by more than 2% difference in the coupon rates. Prepayment risk pushes the yield

6 Yield rates were obtained as of 15 October 2021.
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rate closer to the coupon rate resulting in the yield discrepancy presented above. In the example, there
should be ~1 yield adjustment on the callable yields with high coupon rates.

G.6.2 Exercised callable bonds

G.6.3 Callable bonds with improved credit rating

G.6.4 Callable bonds with decreased remaining maturity term

G.7 Short-term loan with an option to lock into a long-term financing

The type of financing may arise, for example, in the case if the borrower needs to secure the funds for
short-term purposes but would prefer to have an option to convert it into a long-term financing if necessary.
Under the financing type, the objective is to minimize the financing cost by removing term premium from
the financing interest rate.

The loan maturity can be set as a long-term maturity with the clause that the interest rate is renegotiated
on an annual basis. In the case if the lender and the borrower disagree on the interest rate, the borrower
has the option to lock into a long-term financing, The option represents a benefit to the borrower and
therefore the short-term interest rate on the loan must be adjusted for the option premium.

The option is modelled in the ac.finance.SRM tool as the loan redemption premium, which is contingent on
the current market yield rates. The redemption premium is estimated as the fair market value of the long-
term bond. The borrower has incentive to exercise the option whenever the marker rates go up at the 1-
year maturity term and the market value of the long-term loan is below the par value.

Exhibit G.11 Option exercise states

Option exercise action switch diagram
—=— action switch state ——e—— mean - numeric coupon rate
6%
) —ﬁ
-q—; 5% Exercise
£ 3% Do not exercise option option
b ]
= 2%
£ —_
<)
= 1%
=
g 0,
X 1%
(]
.
1 2 3 4 5 6 7 8 9 10
period

(In the example, a short-term loan was modelled using a 1-year fixed 1.7% interest loan (with one year term
approximated by 10 discrete periods) and long-term financing was modelled with a 5-year loan with fixed
3.25% interest rate).

Konstantin Rybakov Interest Rate Options Page 82 of 89



Appendix H Empirical Analysis of Interest Rate Model
Parameters

This section reviews the historical behavior of the estimators for the interest rate model parameters. The
analysis of historical data was applied in this guide to select the default parameter estimation model
(discussed in Section 3).

H.1  Short-term yield rates

The historical behavior of short-term (3-month) Industrial yield rates (as estimated by Bloomberg) is
presented in the exhibit below.

Exhibit H.1  Historical behavior of short-term yields
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The historical period was selected to include the period of very high market volatility (March-April 2020, the
impact of the COVID-9 public health crisis), period of moderately-high in market volatility (January 2019)
and periods of relatively low market volatility. The purpose of including periods with different markets
behavior is to assess the impact of market conditions on the estimated interest rate model parameters.

H.2 Volatility parameter

The volatility of the market yield rates is presented in the exhibits below. As the first step, we estimate
market volatility for the Vasicek model with zero mean reversion parameter. The volatility was estimated
based on 1-month changes in the yield rates (normalized to annual volatility) using EWMA model with 4 =
0.95 parameter.
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Exhibit H.2  Historical volatility (zero mean-reversion parameter)

Vasicek model CIR model
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The exhibit above shows an extremely high volatility parameter estimate during high market volatility period.
This is the result of the random walk model assumption, which produces unrealistic volatility parameter
during extreme movements in market interest rates.*’

The above example illustrates the importance of the mean-reversion assumption in the interest rate
modelling.

H.3  Drift parameter

Drift parameter determines the upward slope of the yield rate term structure. Exhibit below shows the
estimate of the drift parameter matched to the 10-year slope of the term structure.

Exhibit H.3  Historical drift parameter (zero mean-reversion parameter)

Vasicek model CIR model

H.4 Mean-reversion parameter

Mean-reversion parameter determines speed of convergence of market interest rates to the long-term
equilibrium. In this section, we review the behavior of the mean-reversion parameter under two alternative
estimation approaches: (i) mean-reversion parameter calibrated to the long-term equilibrium value; and (ii)
mean-reversion parameter estimated using HP filter model.

H.5 Summary

The analysis of historical data was performed to identify the default approach to parameter estimation,
which produces reasonable and intuitive results. Specifically,

47 Random walk model assumes that past extreme behavior in the market rates will also continue in the future.
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(i) Drift and volatility parameters change significantly over time and should be estimated as of each
specific valuation date to reflect current market conditions. Mean-reversion parameter measures
speed of convergence to the long-run steady state and may be viewed as a static parameter which
should be updated only periodically (e.g. annually).

(i) Simple model with zero mean-reversion parameter produces non-usable parameters in the periods
of market high volatility. Therefore, mean-reversion and convergence to the steady state must be
incorporated into the interest rate model. This is also consistent with the empirical evidence of
interest rate historical behavior.

(iii) A standard approach to model a mean-reversion process is to estimate a long-term trend using HP
filter and estimate speed of convergence to the long-term trend using simple regression analysis.

(iv) Due to low accuracy of daily data, daily frequency produces non-robust parameter estimates. To
improve robustness of the results, the daily data is aggregated into a lower frequency (e.g. monthly)
data, which is used in parameter estimation.

Based on the review of the historical data, the following modelling approach and modelling parameters
were selected:

1. xx
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Appendix | Technical Comments and Modelling Notes

This section presents technical notes which provide a more in-depth insight into the interest rate options
modelling.

.1 Technical Comments

In this section we summarize the technical problems that we encountered while developing and testing the
ac.SRM tools.

» Zero transition probabilities. This case may be present whenever the model drift parameter is
material compared to the model volatility parameter (an example when we observed the problem
is 9 = 2% and o = 0.1%). This problem is typical for Hull-White models with variable drift as in
certain periods of time the estimated drift parameter may be material. The problem is typically
present on the boundary of the set of states. For example, if n,, is the maximum of the discrete set
of states and drift parameter is a large positive number compared to the volatility parameter, then
the process moves outside the discrete set of states and the probability of each state in the set
(estimated based on Normal distribution) is close to a numerically zero value.

To fix the problem for a state r, in which the problem was encountered (cumulative probability of
child states equals numerically to zero), we assign uniform probabilities to all child nodes with states
greater or equal than r, if drift is positive and to all child nodes with states less or equal than r;, if
drift is negative.

» Failure of contraction mapping to converge. This case may be present in state r, whenever r, +
9.dt is greater (smaller) than the maximum (minimum) state in the discrete set of states. If this
problem is encountered, the adjusted transition probabilities assign probability one to the largest
(smallest) state in the discrete set of states.

The above points are illustrated by the following example. Suppose that in the example from Appendix G.3,
the volatility is overridden by a low volatility value ¢ = 0.05%. Then the distribution over the tree nodes is
estimated as follows:

Exhibit 1.1 Interest rate tree with low volatility parameter

time period

0 1 2 3 4 5 ] 7 B 9 10 11 12 13 14 15 16 17 18 19 20
2.88%
5.07% | 100.0% 100.0% 100.0%
3.25% 100.0%
3.44% 100.0% 100.0% 100.0% 100.0% 100.0%
3.63%
3.82% 23.7%
4.01% 76.3%
4.20% 5.6% 0.3%
4.3%% 36.1% 0.3% 41%
458% 58.2% 13% 0.3% 41% 196% 03%
4.76% 12.8% 0.3% 41% 196% 421% 41%
4.55% 414% 03% 41% 196% 42.1% 33.9% 196% 0.35%
5.14% 444% 41% 196% 421% 359% 0.0% 421% 41%
5.33% 196% 42.1% 339% 0.0% 00% 339% 196% 03%
5.52% 421% 339% 0.0% 00% 00% 00% 421% 41%
571% 339% 00% 00% O00% 00% O00% 339k 196% 0.3%
5.90% 0.0% 00% 421% 41%
6.09% 00% 00% 339% 196%
6.27% 00% 0.0% 421%
6.46% 00% 0.0% 339%
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In multiple periods the set of states consist of a single state, which illustrates that at lower volatility values
the interest rate process is close to a deterministic process. The theoretical process will generally deviate
from the single state and the state probability will be close to zero. The numeric procedure needs to identify
those boundary conditions and reassign the probability to one. The transition probability adjustment
algorithm based on the contraction mapping also needs to identify that the transition probabilities cannot
be readjusted so that to match the theoretical mean value. Therefore, the algorithm does not converge and
a unit probability must be assigned to the largest (or lowest) state in the set of discrete states.

1.2 Modelling notes

This section lists assumptions used in the ac.SRM tool implementation.

» Function inputs for transition probabilities. Transition probabilities are modelled using two
objects: (i) object that models transition probabilities of the one-dimensional states of the process
and (ii) object that models the transition probabilities of the process mode. Both evolution of the
state and evolution of the mode are described by four numeric values: time t, action (denoted as y
for states and a for modes), state or mode in period t (denoted respectively as r; or m;) and state
or mode in period t + 1 (denoted respectively as 7,4 Or m;,4).

The interest rate process is a special case of a stochastic process with one-dimensional continuous
state and a discrete set of modes and mode actions. The process has a blank set of state actions
{y}; two mode actions (a = 0 corresponding to not exercising the option and a = 1 corresponding
to exercising the option), and two modes (m = 0 corresponding to the option not being exercised
and m = 1 corresponding to the option being exercised). The transition probabilities of an interest
rate process modes are described by the following mapping (same for each process48):

Pr{(m;=0) > (my;; =0)} =1
Prim;,=1) = (my, = D}=1
{PT{(mc =0)=>(my=D}=1
Prim,=1) = (my, =D} =1

((a=0)=>{

{

t(a =1)>

The transition probabilities of the state are described by default by a function

2
1 _(Tt+1—Tt2—#(t,Tt))
(tl lrlr )=—Xe 20 (rt)
pLY, T Teva \/EO'(T})
» Transition probability object format. Transition probabilities can alternatively be modelled as a
composition of function and mapping objects. This input format is applied for example when the
transition probabilities are modelled for a trinomial tree, where the up, middle, and down

movements of the process are modelled by a respective mapping object.

» Objective and discount functions. Objective function in the generic stochastic model is assumed
to be a function of the following parameters:

f(t,aymr)

where t is time, a is mode action, y is state action, m is mode state, and r is action state.49 The
function f(T,a,y, m,r) also models the process terminal function. In the case of the interest rate
process, the function is estimated as follows:

» If m = 1 then the option was exercised, and the value of the objective function is zero;

48 For a general stochastic process implemented in the tool the transition probabilities of process modes are always assumed to be
static (not dependent on time variable).

49 Note that the framework can be applied to model controlled stochastic processes with the state actions (not just mode actions).
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» If m =0 and a = 1 then the option is exercised, and the value of the function equals the bond
redemption value;

» If m =0 and a = 0 then the option is not exercised, and the value of the function equals the
cash flow paid by the bond in period t.

In the case of the call option, the borrower minimizes the cost of financing and therefore all cash
flows described above are assigned a negative value. In the case of the put option, the value of the
bond is maximized, and the cash flows are estimated with the positive sign.

The discount function is modelled as a function of the following parameters:
D(t,r)

Discount depends only on the process state but not the process mode state. Discounts are
estimated based on the zero-coupon bond prices described in Sections 2.2 or 2.3
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