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List of Abbreviations 

 

The following abbreviations and symbols are used in this guide: 

 

ac.finance.SRM 
Java/Excel – based interest rate option valuation tool developed as part of this 

guide 

ARN Adjustable rate note 

Bloomberg Bloomberg Professional Service 

bps Basis points 

CBOE Chicago Board Options Exchange 

CIR Cox-Ingersoll-Ross 

DerivaGem Hull-White interest rate option valuation tool 

EWMA Exponentially weighted moving average 

GARCH Generalized auto-regressive conditional heteroskedasticity 

GARP Global association of risk professionals 

HP filter Hodrick-Prescott filter 

HW Hull-White 

Moody’s Moody's Investors Services, Inc. 

OECD Guidelines 
“BEPS Actions 8 – 10, Financial Transactions”, a draft published in July – 

September 2018 for the purposes of public discussion 

Reuters Reuters news agency, a subsidiary of Thomson Reuters Corp. 

SA Semi-annual 

SRM Short rate model 

SRVIX Swap Rate Volatility Index 
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Section 1 Introduction 
  

  

The notes summarize the approaches applied to valuation interest rate options including (i) prepayment 

(call) option and (ii) pay-on-demand (put) option. 

A prepayment option is a standard term in a bond transaction. In a typical bond sample more than half of 

the bonds are often callable bonds.1 Presence of a put option is a much less typical term of a bond 

transaction. However, putable bonds are also periodically observed in a sample of bond transactions. 

In an intercompany loan transaction, the prepayment (or pay-on-demand) option is typically included for 

two reasons: 

1. The call option is included to maximize the interest rate on the loan, which is consistent with the 

market interest rates. (In the case of a pay-on-demand option the presence of a put option 

decreases the interest rate on the loan); 

2. The parent group of the borrower wants to have an option to unwind the debt structure if deemed 

necessary. Presence of the call (put) option provides such an option for the parent group. 

Presence of the call (put) option may result in a transfer pricing risk that the borrower may have an incentive 

to refinance the loan at some time in the future. Therefore, the interest rates need to be monitored on a 

regular basis to ensure that the borrower does not have an incentive to exercise the call option. An example 

of debt refinancing is provided in Appendix F.4. Presence of a penalty structure in a prepayment option 

partially mitigates the risk. 

The objective of the interest rate option pricing tool, which is developed as a part of this guide, is to (i) adjust 

the yield rates on comparable callable (putable) bonds and to (ii) estimate the prepayment (pay-on-demand) 

premium (discount) for the tested transaction.   

1.1 Interest rate options 

Bond agreements often include different options such as an option for the borrower to repay the bond early 

prior to the bond maturity date or the option for the lender to demand and early bond repayment. Early bond 

repayment allows the borrower to take advantage of lower market interest rate and refinance the bond at 

lower cost. Similarly, a pay-on-demand option allows the lender to take advantage of high market interest 

rates and reinvest the funds in a higher yield instruments with the same credit risk. 

To exercise the prepayment (pay-on-demand) option, the borrower (lender) is typically required to provide 

a notice period to the counterparty prior to exercising the option. Exercising the option may involve a penalty 

either in the form of a make-whole provision or a premium, which generally depends on the remaining 

maturity term of the bond. 

The primary risk that is modelled to evaluate the option value is the market interest rate risk. Decrease in 

market interest rates increases the chances of the bond prepayment. Similarly increase in market in interest 

rates increases the chances that the lender will demand the bond prepayment. In practice pay-on-demand 

option is rarely included in the bond agreement and when included the option can be typically exercised in 

                                                      

1 Bloomberg typically classifies a callable bond with the make-whole provision that is effective until the bond maturity date as a bullet 
bond. We also treat these bonds as effectively non-callable bonds. Many callable bonds also have make-whole termination date which 
is a few months prior to the bond maturity dates. These bonds are also treated as effectively non-callable. 
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a few discrete dates, where the first exercise date is set at least five years after the bond issue date. The 

prepayment option is a much more typical feature of a bond agreement. However, in most cases the 

prepayment option has a penalty structure in the form of both make-whole provision and prepayment 

premium penalty structure. A typical penalty structure is described in the Appendix B. 

Valuation of interest rate options involves the following steps: 

► Model a stochastic process of interest rates. The process is typically described by an interest rate 

tree and the probability distribution of the interest rates over the tree states; 

► Estimate the borrower (lender) prepayment (pay-on-demand) decision, which specifies in which 

interest rate tree state the prepayment (pay-on-demand) is exercised. The option is exercised 

whenever the value of exercising the option (which takes into account the option penalty structure) 

exceeds the value of keeping the bond; 

► Estimate the value of the prepayment (pay-on-demand) option as the difference between the value 

of the bond with the option and the value of the bullet (option-free) bond.  

Multiple factors may affect the stochastic changes in the market interest rates. For example, a Nelson-

Seidel modelling approach2 describes interest rate process as a three-factor model, where the three factors 

(level, slope, and curvature) represent the geometric shape of the interest rate term structure. Interest rate 

options are typically modelled using one-factor models. The models use one-factor process to describe 

short-term interest rates. The interest rates with other maturity terms are derived analytically from the one-

factor short-term rates. Under the approach, the movements in the interest rates with different maturity 

terms are affected by a single stochastic factor and therefore the movements are strongly correlated. 

A special case of the one-factor interest rate models are interest rate models with affine term structure. The 

interest rates have affine term structure whenever the prices of zero-coupon bonds are described by the 

following equation 

𝑃𝑇 = 𝐴(𝑡, 𝑇) × 𝑒
−𝐵(𝑡,𝑇)×𝑟0 

where 𝐴(𝑡, 𝑇) and 𝐵(𝑡, 𝑇) are some arbitrary functions. The respective interest rate term structure is described by the 

following equation 

𝑅𝑡 = − ln𝑃𝑇 = − ln𝐴(𝑡, 𝑇) + 𝑟0 × 𝐵(𝑡, 𝑇) 

Under the affine term structure modelling approach, the interest rates with arbitrary maturity term 𝑇 are a 

linear function of the short-term interest rates 𝑟0. The analytical solution of the interest rate term structure allows 

(i) to derive model parameters and (ii) to validate the results of the interest rate option valuation analysis. The details 

of model parameter estimation and model output validation are provided in the sections below. 

This guide describes four alternative affine term structure models. Two parametric models include Vasicek model and 

Cox-Ingersoll-Ross (CIR) model. The parametric models are described by three numeric parameters: drift, volatility, 

and mean-reversion. Two non-parametric models include Hull-White (extended Vasicek) and Hull-White (extended 

CIR) models. The volatility and mean-reversion parameters in the non-parametric models are still assumed to be 

numeric. The drift parameter in the non-parametric models are assumed to be functions of maturity term 𝑡. 

                                                      

2 The approach is described in more detail in a separate “Interest Rate Benchmarking” guide. 
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1.2 Terminology 

The following terminology is used throughout these notes. 

► Bullet bond. A bullet bond is a bond where a payment of the entire principal of the bond, and 

sometimes the principal and interest, is due at the bond maturity term. Effectively a bullet bond is 

a bond with no prepayment and pay-on-demand options. 

► Call option. An early prepayment option providing a borrower with a right to prepay outstanding 

principal and accrued interest amounts. 

► Put option. A pay-on-demand option allowing a lender to demand an early repayment of 

outstanding principal and accrued interest prior to a maturity date. 

► Make-whole provision. Under a make whole clause the borrower has to value the cash flows 

beyond the date of the bond early call/redemption date. The valuation is performed using a low 

discount rate (for example, the discount rate is estimated as the yield on government bond plus a 

small spread). The estimated bond full value (which includes future bond cash flows) is 

compensated to the lender if the call option is exercised. The purpose of the make-whole provision 

is to provide a strong form of protection for lenders/investors in securities, designed to mitigate the 

adverse effects of call risk for investors. The consequence of a make whole clause for the investor 

is that they can re-invest the redemption monies in government stock, thus preserving their 

originally expected cash inflows at lower risk.  

Potentially it makes prohibitively expensive for the borrower to take an early redemption under the 

make-whole termination provision. In practice the make-whole provision often has a termination 

date. If the make-whole termination date matches the maturity date, then Bloomberg typically refers 

to the bond as a bullet bond. In this guide we assume that exercising the call option has an infinite 

cost prior to the make-whole termination date (so that the call option is never exercised prior to the 

make-whole termination date) and the prepayment penalty is determined by the bond penalty 

structure after the make-whole termination date. 

► Notice period. The notice period is the time period between the receipt of the notice that the option 

will be exercised and the actual option exercise date. It is assumed in this guide that the notice 

provided by the borrower is a commitment that the option will be exercised at the end of the notice 

period. 

► Soft call. Soft call protection requires the payment of a premium to the investor, on any early 

redemption of a callable bond by the borrower. At early redemption the premium becomes payable, 

together with principal and outstanding interest at the call/redemption date.  

Soft call is an alternative to the make-whole provision (hard call). Soft call is a weak form of 

protection for lenders/investors in securities, designed to mitigate the adverse effects of call risk for 

investors. It sometimes applies only for an early part - for example just the first year - of the life of 

a security (the security becoming freely callable after that initial period of soft call protection). 

► Arbitrage-free interest rate models are the models (such as Hull-White extended Vasicek and 

extended CIR models), in which the term structure of yield rates is matched exactly. 

 

1.3 Valuation summary 

The notes summarize the steps performed in a selection and option estimation for a specific family of 

interest rate models. The discussion is provided for Hull-White (extended Vasicek) and Hull-White 

(extended CIR) models (however the list can be extended if necessary). The steps are summarized below 

and are described in the following sections. 
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1. Select the family of interest rate models  

► Vasicek; 

► Hull-White (extended Vasicek) ; 

► Cox-Ingersoll-Ross (CIR); 

► Hull-White (extended CIR); 

2. Estimate parameters of the model. Each of the above two families depends on the following three 

parameters: (i) volatility; (ii) drift; (iii) mean reversions, and (iv) coupon value. Parameters are 

currently assumed to be estimated as follows: 

► Volatility is estimated based on a historical sample of short-term rates; 

► Drift is estimated based on the latest term structure of yield rates; 

► Mean-reversion parameter is assumed to be zero. 

► Coupon rate value is calibrated so that the bond bullet value is equal to par. 

3. Review the adjusted parameters and adjust manually if necessary. For the parametric models all 

three parameters (drift, volatility, and mean-reversion) can be manually overridden. For the non-

parametric models only numeric parameters (volatility and mean-reversion) can be manually 

overridden. 

4. Estimate interest rate options. 

5. Validate the results of option estimation analysis. 

► Derive the formulas of zero-coupon prices and respective yield term structure. Zero-coupon 

prices are used as proxies for the discount factors in option calculation. Yield term structure is 

used to derive the drift parameter in the step above. Zero coupon prices are also used to derive 

theoretical bond price and compare it against the estimated numerical bond prices; 

► Derive the formulas for the terminal interest rate distribution parameters. The parameters are 

used in the test against the calculated numerical distribution parameters. 

► Derive the formulas for the implied model parameters based on the estimated terminal 

distribution parameters. Compare the implied model parameters with the actual parameters to 

assess how material is the error produced by the model discrete approximation implementation. 

► Validate the results directly using DerivaGem as an alternative option valuation tool. 
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Section 2 Interest Rate Model Families 
  

  

General form of interest rate process can be represented as follows: 

(2.1)  𝑑𝑟𝑡 = 𝜇(𝑡, 𝑟𝑡) × 𝑑𝑡 + 𝜎(𝑡, 𝑟𝑡) × 𝑑𝑊𝑡 

where different models are summarized in the exhibit below. The Vasicek and CIR models are parametric 

models described by three parameters: drift, volatility, and mean-reversion. For simplicity, the mean –

reversion parameter is assumed to be zero. The volatility parameter is estimated based on historical sample 

of short-term rates. The drift parameter is estimated to approximate the term structure of the yield rates. 

The guide describes four special types of the affine structure interest rate models. Vasicek and CIR models 

are parametric models, which are described by drift, volatility, and mean-reversion parameters (denoted 

respectively as 𝜗, 𝛼, and 𝜎). Mean-reversion parameter is assumed to be zero. Volatility parameter is 

estimated based on historical sample of short-term rates. Drift parameter is estimated so that to match 

approximately the interest rate term structure. 

2.1 Model specification 

Alternative interest rate model specifications are summarized in the Exhibit 2.1 below.3 

Exhibit 2.1 Summary of interest rate model specifications 

Model name Drift term 
Diffusion 

term 
Comment 

Vasicek (1977)4 𝜇𝑡 = 𝜗 − 𝛼𝑟𝑡 𝜎 
Approximate matching of the term structure (using 
constant slope parameter); unbounded interest rate; 
constant interest rate volatility 

Hull-White (extended 

Vasicek, 1990)5 
𝜇𝑡 = 𝜗𝑡 − 𝛼𝑡𝑟𝑡 𝜎𝑡 

Exact matching of the term structure (using constant slope 
parameter); unbounded interest rate; constant interest 

rate volatility 

Cox – Ingersoll – Ross 

(CIR, 1985) 
𝜇𝑡 = 𝜗 − 𝛼𝑟𝑡 𝜎𝑡𝑟𝑡

1
2 

Approximate matching of the term structure (using 
constant slope parameter); bounded interest rate (with 
zero); interest rate volatility increases with interest rates 

Hull-White (extended 

CIR, 1990) 
𝜇𝑡 = 𝜗𝑡 − 𝛼𝑡𝑟𝑡 𝜎𝑡𝑟𝑡

1
2 

Exact matching of the term structure (using constant slope 
parameter); bounded interest rate (with zero); interest rate 
volatility increases with interest rates 

                                                      

3 Other affine term structure model specifications have also been studied in the financial literature including the following models: 
Dothan (1978), Rendleman – Bartter, Courtadon, Constant Elasticity of Variance (CEV), Marsh-Rosenfeld (1983), Exponential Vasicek 
(EV), Black-Derman-Toy (1990), Black-Karazinski (1991), and other. However, these models are outside the scope of this guide. 

4 The 𝜗 parameter in the Vasicek model is assumed to be of the form 𝜗 = 𝛼𝑏, where 𝑏 is the long-term steady state of the interest 
rates. In this form the random walk model (𝛼 = 0) cannot be modelled as a special case of Vasicek model. We present the Vasicek 
model in the format consistent with the Hull-White (extended Vasicek) format. 

5 Hull-White describe formally the drift parameter in the model as follows: 𝜇𝑡 = 𝜗𝑡 + 𝛼(𝑏 − 𝑟). We assume that 𝑏 = 0 or equivalently 
that the 𝜗𝑡 term represents the 𝜗𝑡 + 𝛼𝑏 term in the original Hull-White model. Parameters 𝛼𝑡 and 𝜎𝑡 in the Hull-White (extended 
Vasicek) and Hull-White (extended CIR) models are assumed to be constant through these notes. 
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The Hull-White (extended Vasicek0 and Hull-White (extended CIR) models are arbitrage-free models in 

which the drift parameter 𝜗(𝑡) is a function of time 𝑡, estimated so that to match exactly the term structure 

of the interest rates. The mean-reversion parameter is still assumed to be zero and the volatility parameter 

is estimated based on historical sample of short-term yields. 

The CIR model has the following advantages compared to the Vasicek model. 

► Bounded interest rates. Zero interest rates do not have any specific significance in the Vasicek 

model. The movement of interest rates is conceptually similar for positive and negative interest 

rates. In the CIR model, the volatility of interest rates decreases to zero as the interest rates 

approach zero bound. Under certain conditions, the interest rates never cross the zero bound in 

the CIR model.  

► Heteroscedastic volatility of interest rates. The volatility of interest rates in the Vasicek model does 

not depend on the interest rates level. The interest rate volatility in the high interest rate markets is 

the same as the volatility in the low interest rate markets. This is typically not consistent with the 

actual observed markets interest rate behavior. 

 

2.2 Zero-coupon bond prices 

The equations for zero-coupon bond prices are used to (i) calibrate the parameters of the interest rate 

model and to (ii) validate the results of the model numerical estimation. The bullet bond prices, described 

by the equation (assuming 𝑡 = 0. For arbitrary 𝑡, the yield rate 𝑟0 is replaced with 𝑟𝑡 and tenor 𝑇 is replaced 

with 𝑇 − 𝑡). 

(2.2)  𝑃𝑇 = 𝐴 × 𝑒
−𝐵𝑟0 

or, equivalently, 

(2.3)  ln 𝑃𝑇 = −𝐵𝑇 × 𝑟0 + ln 𝐴𝑇 

and respective interest rate term structures are summarized in the exhibits below. The formulas are derived 

in the Appendix A. 

Exhibit 2.2 Summary of zero-coupon bond prices 

Model name Zero-coupon bond bullet price 

 𝑩(𝒕, 𝑻) 𝑨(𝒕, 𝑻) 

Vasicek (1977) 
1 − 𝑒−𝛼(𝑇−𝑡)

𝛼
 𝑒

−[(𝜗−𝜆𝜎−
𝜎2

2𝛼
)×
(𝑇−𝑡−𝐵)

𝛼
+
𝜎2𝐵2

4𝛼
]
 

Hull-White (extended 

Vasicek, 1990) 

1 − 𝑒−𝛼(𝑇−𝑡)

𝛼
 𝑒

−[∫ [𝜗(𝑠)−𝜆𝜎]×𝐵(𝑠)×𝑑𝑠−
𝜎2

2𝛼2
×(𝑇−𝑡−𝐵)+

𝜎2𝐵2

4𝛼
𝑇
𝑡 ]

 

CIR (1985) 
2 × (𝑒𝛾(𝑇−𝑡) − 1)

(𝛾 + 𝛼 + 𝜆𝜎) × (𝑒𝛾(𝑇−𝑡) − 1) + 2𝛾
 [

2𝛾𝑒(𝛾+𝛼+𝜆𝜎)(𝑇−𝑡)/2

(𝛾 + 𝑎 + 𝜆𝜎) × (𝑒𝛾(𝑇−𝑡) − 1) + 2𝛾
]

2𝜗
𝜎2
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Model name Zero-coupon bond bullet price 

 𝑩(𝒕, 𝑻) 𝑨(𝒕, 𝑻) 

Hull-White (extended 

CIR, 1990) 

2 × (𝑒𝛾(𝑇−𝑡) − 1)

(𝛾 + 𝛼 + 𝜆𝜎) × (𝑒𝛾(𝑇−𝑡) − 1) + 2𝛾
 𝑒−∫ 𝜗(𝑠)×𝐵(𝑠,𝑇)×𝑑𝑠

𝑇
𝑡  

where 

(2.4)  𝛾 = √(𝛼 + 𝜆𝜎)2 + 2𝜎2 → 𝜎√2 + 𝜆2 as 𝛼 → 0 

 and 𝜆 is the market price of risk (with default value assumed to be 𝜆 = 0). 

Assuming 𝛼 = 0, the equations can be simplified as follows 

Exhibit 2.3 Summary of zero-coupon bond prices at 𝜶 = 𝟎 

Model name Zero-coupon bond bullet price 

 𝑩(𝒕, 𝑻) 𝑨(𝒕, 𝑻) 

Vasicek (1977) 𝑇 − 𝑡 𝑒
−[(𝜗−𝜆𝜎)×

(𝑇−𝑡)2

2
 − 
𝜎2

6
×(𝑇−𝑡)3]

 

Hull-White (extended 

Vasicek, 1990) 
𝑇 − 𝑡 𝑒

−[∫ [𝜗(𝑠)−𝜆𝜎]×(𝑇−𝑠)𝑑𝑠−
𝜎2

6
×(𝑇−𝑡)3

𝑇
𝑡 ]

 

CIR (1985) 
2 × (𝑒𝛾(𝑇−𝑡) − 1)

(𝛾 + 𝜆𝜎) × (𝑒𝛾(𝑇−𝑡) − 1) + 2𝛾
 [

2𝛾𝑒(𝛾+𝜆𝜎)(𝑇−𝑡)/2

(𝛾 + 𝜆𝜎) × (𝑒𝛾(𝑇−𝑡) − 1) + 2𝛾
]

2𝜗
𝜎2

 

Hull-White (extended 

CIR, 1990) 

2 × (𝑒𝛾(𝑇−𝑡) − 1)

(𝛾 + 𝛼 + 𝜆𝜎) × (𝑒𝛾(𝑇−𝑡) − 1) + 2𝛾
 𝑒−∫ 𝜗(𝑠)×𝐵(𝑠,𝑇)×𝑑𝑠

𝑇
𝑡  

  Respective term structure of the interest rates defined as6  

(2.5)  𝑅𝑇 = −
ln𝑃𝑇
𝑇

 

is described by the following equation: 

(2.6)  𝑇𝑅𝑇 = −ln𝑃𝑇 = − ln𝐴(𝑡, 𝑇) + 𝐵(𝑡, 𝑇) × 𝑟0 

We also use the following notation in this guide: 𝐴(𝑇) = 𝐴(0, 𝑇) and 𝐵(𝑇) = 𝐵(0, 𝑇). 

 

                                                      

6 The yield rate of a zero-coupon bond is defined as a value 𝑅𝑇 such that 𝑃𝑇 = 𝑒
−𝑇𝑅𝑇. 
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2.3 Zero-coupon bond price approximations 

The equations for zero-coupon bond prices are applied to calibrate parameters of the interest rate option 

model. The calibration however cannot be described by explicit equations due to complex functional form 

of the price equations. 

To simplify parameter calibration, the mean-reversion parameter is set to zero, 𝛼 = 0. The model with 𝛼 =

0 typically produces robust interest rate option values and is a reasonable assumption in many cases. In 

practice, the interest rate data supports zero mean reversion in the short-term and positive mean-reversion 

in the longer-term. Therefore, as an alternative to the 𝛼 = 0 case, we derive in this section the approximate 

equations for 𝛼 → 0. In the next section we show how the price approximation can be applied to calibrate 

the interest rate model parameters. 

The approximate equations for zero-coupon bond prices with 𝛼 → 0 are summarized in the Exhibit 2.4 

below. 

Exhibit 2.4 Summary of zero-coupon bond price approximations 

Model name Zero-coupon bond bullet price 

 𝑩(𝒕, 𝑻) 𝑨(𝒕, 𝑻) 

Vasicek (1977) 7,8,9,10 (𝑇 − 𝑡) − 𝛼
(𝑇 − 𝑡)2

2
 𝑒

−[((𝜗−𝜆𝜎)
(𝑇−𝑡)2

2
−𝜎2

(𝑇−𝑡)3

6
)−𝛼×((𝜗−𝜆𝜎)

(𝑇−𝑡)3

6
−𝜎2

(𝑇−𝑡)4

8
)]

 

Hull-White (extended 

Vasicek, 1990) 
(𝑇 − 𝑡) − 𝛼

(𝑇 − 𝑡)2

2
  

CIR (1985)   

Hull-White (extended 

CIR, 1990) 
  

where 

(2.7)  𝛾~𝜎√2 + 𝜆2 

 

 

                                                      

7 Expression 𝐵(𝑡, 𝑇) is approximated as 𝐵(𝑡, 𝑇) = (𝑇 − 𝑡) − 𝛼
(𝑇−𝑡)2

2
+ 𝛼2

(𝑇−𝑡)3

6
+ 𝛼3

(𝑇−𝑡)4

24
 

8 Expression 
(𝑇−𝑡−𝐵)

𝛼
 is approximated as follows 

(𝑇−𝑡−𝐵)

𝛼
~
(𝑇−𝑡)2

2
− 𝛼

(𝑇−𝑡)3

6
+ 𝛼2

(𝑇−𝑡)4

24
   

9 Expression (𝜗 − 𝜆𝜎 −
𝜎2

2𝛼
) ×

(𝑇−𝑡−𝐵)

𝛼
 is approximated as follows (𝜗 − 𝜆𝜎 −

𝜎2

2𝛼
) ×

(𝑇−𝑡−𝐵)

𝛼
~ [−

𝜎2

4𝛼
× (𝑇 − 𝑡)2] + [(𝜗 − 𝜆𝜎) ×

(𝑇−𝑡)2

2
+ 𝜎2 ×

(𝑇−𝑡)3

12
] − 𝛼 × [(𝜗 − 𝜆𝜎) ×

(𝑇−𝑡)3

6
+ 𝜎2 ×

(𝑇−𝑡)4

48
] 

10 Expression 
𝜎2𝐵2

4𝛼
 is approximated as follows 

𝜎2𝐵2

4𝛼
= [

𝜎2

4𝛼
× (𝑇 − 𝑡)2] − [𝜎2 ×

(𝑇−𝑡)3

4
] + 𝛼 × [𝜎2 ×

7

48
× (𝑇 − 𝑡)4] 
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2.4 Term structure 

The term structure is derived directly from the zero-coupon bond equations using the term structure 

definition (2.5): 

𝑅𝑇 = −
ln𝑃𝑇
𝑇

= 𝐵𝑟0 − ln𝐴 

The term structure equations for different interest rate models are summarized in the exhibit below. 

Exhibit 2.5 Term structure equations 

Model 

name 

Mean 

reversion 
Term structure 

Vasicek 

(1977) 

𝛼 > 0 

𝑇𝑅𝑇 = 𝐵(0, 𝑇) × 𝑟0 + ∫ 𝜗(𝑠) × 𝐵(𝑠, 𝑇) × 𝑑𝑠 −
𝜎2

2𝛼2
× (𝑇 − 𝐵(0, 𝑇)) +

𝜎2𝐵(0,𝑇)2

4𝛼

𝑇

0
,  

where 𝐵(𝑡, 𝑇) =
1−𝑒−𝛼(𝑇−𝑡)

𝛼
 

𝛼 = 0 
𝑇𝑅𝑇 = 𝑇 × 𝑟0 + ∫ 𝜗(𝑠) × (𝑇 − 𝑠) × 𝑑𝑠

𝑇

0
−
𝜎2

6
× 𝑇3 = 𝑇 × 𝑟0 + 𝜗

𝑇2

2
− −

𝜎2

6
× 𝑇3,11  

where 𝐵(𝑡, 𝑇)~(𝑇 − 𝑡) −
𝛼

2
× (𝑇 − 𝑡)2 +

𝛼2

6
× (𝑇 − 𝑡)3 

 

 

2.5 Term structure approximation 

 

                                                      

11 Formally, −
𝜎2

2𝛼2
× (𝑇− 𝐵(0,𝑇))+

𝜎2𝐵(0,𝑇)2

4𝛼
= −

𝜎2

2𝛼2
× (

𝛼

2
×𝑇2 −

𝛼2

6
× 𝑇3)+

𝜎2

4𝛼
× (𝑇−

𝛼

2
× 𝑇2)

2
=

𝜎2

12
× 𝑇3 −

𝜎2

4
× 𝑇3 = −

𝜎2

6
×𝑇3 
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Section 3 Parameter Estimation 
  

  

Parameter estimation is one of the key steps of option estimation. It is arguably a more complex task to 

produce stable and intuitive estimates for option parameters compared to the option estimation step. The 

objectives, approaches, and specific equations for option model parameters estimation are presented 

below. 

3.1 Overview 

In this section, we overview the criteria which are taken into consideration to assess reasonability of the 

estimated option model parameters. We present then a high-level overview of the approaches tat can 

potentially be applied for parameter estimation. Sections 3.3 – 3.7 describe the default parameter estimation 

methods applied in the option valuation tool. Appendix C provides an overview of alternative parameter 

estimation approaches. 

3.1.1 Objectives 

The key objective is to produce parameter values which are intuitive and can be easily interpreted and 

explained. Specifically, the following considerations are taken into account. 

(i) Robustness of estimates to outliers. Daly data is potentially highly sensitive to inaccurate yield data 

estimates, which can produce highly sensitive parameter estimates. 

(ii) Consistency with arbitrage pricing. Interest rate option models are based on arbitrage-free pricing 

models of interest rates, in which the full interest rate term structure is derived analytically from the 

short-term interest rate model. Therefore, a reasonably accurate matching of the theoretical and 

empirical term structures is one of the objectives of the parameter estimation. 

(iii) Consistency with market fluctuations. Prepayment option values are expected to be high in the 

periods of high markets volatility when interest rates increase sharply. It is expected that market 

interest rates will return back to the equilibrium values and prepayment option will be in the money 

and exercised.  

(iv) Zero interest rate floor considerations. While there is some evidence that interest rates move below 

zero floor, the evidence is very limited (observed only for government and inter-banking yield rates 

denominated in European currencies) and interest rate movement below the zero-floor threshold is 

relatively small. Therefore, zero floor constraint is a reasonable assumption for the interest rates. 

The implication of the zero-floor assumption is that the call option values are expected to be low for 

low interest rates (due to limited potential downside exposure of the interest rates).  

(v) Mean-reversion modelling. Historically, interest rate models are described reasonably well with a 

random walk models for the short-term horizon and mean-reversion process for the medium and 

long-term horizons. Therefore, mean-reversion is a material factor for the interest rate option 

models.     

The consistency of the implemented interest rate option model with the criteria discussed above is 

discussed in Appendix F.5. 

3.1.2 Approaches   

The section reviews three alternative approaches to parameter estimation. 

► Regression analysis. The approach is based on the direct estimation of the interest rate 

regression model 
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(3.1)  𝑑𝑟𝑡 = 𝜇(𝑡, 𝑟𝑡) × 𝑑𝑡 + 𝜎(𝑡, 𝑟𝑡) × 𝑑𝑊𝑡 

 

► Calibration approach. Under the alternative approach, all parameters of the interest rate model 

are estimated so that to match market price data described by the equation 

(3.2)  ln 𝑃𝑇 = 𝑇𝑅𝑇 = −𝐵(𝑇) × 𝑟0 + ln 𝐴(𝑇) 

 

► Mixed estimation approach. Under the mixed estimation approach, some parameters are 

estimated based on historical data and equation (3.1) and other parameters are estimated so that 

to match current market data and approximate equation (3.2). Specifically, the volatility and mean-

reversion parameters are estimated from the equation (3.1) and drift parameter is estimated from 

the equation (3.2). This is the default approach in this guide. 

The data used for parameter calibration is typically represented by bond prices with different maturities, 

which equivalently is converted to the term structure of the bond yields. In both Hull-White extended Vasicek 

and CIR model the function 𝜗𝑡 can be selected so that to match exactly the term structure of the yield rates. 

Therefore, the volatility and mean-reversion parameters need to be either calibrated using additional market 

data or estimated based on historical data. The default parameter estimation approach applied in this guide 

is to (i) assume constant volatility and mean-reversion parameters and estimate them based on historical 

data and to (ii) assume either constant or time-varying drift parameter and calibrate the parameter to match 

the yield term structure. 

The interest rate models (such as Hull-White extended Vasicek and extended CIR models), in which the 

term structure is matched exactly, are referred to as arbitrage-free models. Yield term structure is typically 

estimated based on the Bloomberg or Reuters yield series with different maturity terms. Bloomberg reports 

the yield series with the following maturity terms (in years): 𝑡𝑖 = {0.25, 0.5, 1, 2, 3, 4, 5, 7, 8, 9, 10, 15}. To match 

the yield term structure, the drift function is assumed to be piecewise constant estimated for the set of 

values {𝑡𝑖}. 

The diagram with the piecewise-constant drift function is illustrated in the diagram below. 

Exhibit 3.1 Piecewise-constant drift function 

 

The equation for the yield term structure  

maturity, in years 𝑡𝑖 

d
ri
ft

, 
in

 %
 

𝜗𝑖+1 

𝑡1 = 0.25 

Piecewise-
constant drift 

parameter  

𝑡𝑖+1 15 
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𝑇𝑅𝑇 = 𝐵(𝑇) × 𝑟0 − ln 𝐴(𝑇) 

is used to calibrate the parameters of the interest rate process.  

We assume in the sections below that the market price of risk is set to zero, 𝜆 = 0 and the mean-reversion 

parameter is set to zero, 𝑎 = 0. Note that the process with zero mean-reversion does not converge to a 

long-term equilibrium. Estimation of mean-reversion parameter is discussed in Appendix C. 

3.2 Sample parameters 

As a first step, a sample is selected which is used to estimate the model parameters. The short-term interest 

rates are selected based on the short-term yield estimates12 with the industry sector and credit rating 

matching the industry sector of the borrowing entity and credit rating of the tested transaction. The sample 

is selected using the following parameters. 

1. Sample size. 

2. Period for yield change estimation. 

3. Probability threshold for the outlier elimination.  

   

3.3 Volatility parameter 

This section describes three alternative methods for volatility estimation adapted for each interest rate 

model: 

1. Constant variance estimation.  

► The advantage of the approach is that (i) it is easy to implement (estimation is based on simple 

statistics); and (ii) it produces different variance estimates for different credit ratings (typically 

higher variance for lower ratings capturing higher volatility of yield series with low credit ratings. 

► The potential problems with the approach is that (i) it can potentially be highly sensitive to 

outliers; and (ii) the same weight is assigned to both recent and remote observations. High 

market volatility observed a few months ago will still have a large impact on the volatility estimate 

even though current market volatility may be low. The volatility estimates are often non-stable. 

2. Variance based on market volatility index. 

► The advantage of the approach is that (i) it produces stable and reasonable estimates; (ii) high 

/ low variance estimates match high / low market volatility; (iii) implied volatility estimated based 

on swaption market price data is a preferred approach from the transfer pricing perspective; and 

(iv) volatility index show consistent behavior over time and is estimated by a reputable source. 

► The key problem with the approach is that it assigns the same volatility to each credit rating. In 

practice, the interest rate volatility index is likely implied from the option prices on US$ 

Treasuries. The volatility estimate also assumes Normal model of interest rates (Vasicek 

model). Therefore, it is not applicable to CIR or other types model types. 

3. Variance based on EWMA and GARCH(1, 1) models. 

                                                      

12 Typically, 3-month yield series is selected for the estimation of the option model parameters. 
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► The advantage of the approach is that (i) it assigns higher weight to recent volatility (and, 

therefore, variance estimates move cyclically with the market volatility); and (ii) the volatility 

estimate depends on the yield series credit rating. 

► Potential problems with the approach is that (i) it is more difficult to estimate (it’s based on 1st – 

order auto-regression model); and (ii) the results can potentially be sensitive to outliers (check).  

The default approach is to estimate sample volatility using annual deviations in the yield rates. Alternative 

approaches are discussed in Appendix C.1. The default approach was selected for the following reasons: 

(vi) The estimator is robust with respect to the outliers. 

(vii) The estimator captures period of high volatility and high interest rates through higher volatility 

parameter (check EWMA again as a default option).  

 

3.3.1 Constant variance 

Under the ‘constant variance’ approach, the variance is estimated as the following sample statistics. 

(3.3)  𝜎𝑛 = 𝜎 = 𝜅 × 𝑠𝑡𝑑𝑒𝑣 [𝑢𝑡] 

where 𝜅 is the normalization parameter applied to produce an annual standard deviation parameter. 

Specifically, if 𝑢𝑡 is estimated using annual changes in the data, then 𝜅 = 1. If 𝑢𝑡 is estimated using daily 

changes in the data, then 𝜅 = √250 (assuming there are 250 business days in the year). In general, 

parameter 𝜅 is estimated using the following equation: 

(3.4)  𝜅 = √
250

𝜏
 

where 𝜏 is the number of business days between consecutive yield data observations applied to estimate 

the changes in the residuals. 

Parameter 𝜏 is selected based on the following considerations: (i) presence of outliers in the sample; and 

(ii) period over which volatility is estimated. The larger is parameter 𝜏, the lower is the impact of outliers on 

the results and the longer is the period over which the volatility is estimated.  

3.3.2 Vasicek and Hull-White (extended Vasicek) 

Sample volatility is estimated based on the following short rate representation. 

𝑑𝑟𝑡 = (𝜗𝑡 − 𝑎𝑟𝑡) × 𝑑𝑡 + 𝜎 × 𝑑𝑊𝑡 

The annual volatility 𝜎 is estimated based on annual deviations of the yield rates by applying the following 

equation (assuming zero mean-reversion, 𝑎 = 0, and constant drift, 𝜗𝑡 = 𝜃): 
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(3.5)  𝜀𝑡 = 𝜎∑ 𝑑𝑊𝑡 × √𝑑𝑡 =∑ (𝑑𝑟𝑡 − 𝜃𝑑𝑡) = 𝑟𝑡 − 𝑟𝑡−250 − 𝜃
𝑡

𝑡−250

𝑡

𝑡−250
 

where 250 is the proxy for the number of business days in a year. The volatility parameter 𝜎 is estimated 

as a sample standard deviation of the sample constructed using equation (3.5).13 

3.3.3 CIR and Hull-White (extended CIR) 

Sample volatility is estimated based on the following short rate representation. 

𝑑𝑟𝑡 = (𝜗𝑡 − 𝑎𝑟𝑡) × 𝑑𝑡 + 𝜎 × √𝑟𝑡 × 𝑑𝑊𝑡 

The annual volatility 𝜎 is estimated based on annual deviations of the yield rates by applying the following 

equation (assuming zero mean-reversion, 𝑎 = 0, and constant drift, 𝜗𝑡 = 𝜃): 

(3.6)  𝜀𝑡 = 𝜎∑ 𝑑𝑊𝑡 × √𝑑𝑡 =∑
𝑑𝑟𝑡 − 𝜃𝑑𝑡

√𝑟𝑡

𝑡

𝑡−250

𝑡

𝑡−250
 

The volatility parameter 𝜎 is estimated as a sample standard deviation of the sample constructed using 

equation (3.6). For simplicity, parameter 𝜃 is set to zero in the above equation. 

3.4 Drift parameter 

Drift parameter is estimated to match approximately (in Vasicek and CIR) or exactly (in Hull-White extended 

Vasicek or Hull-White extended CIR) the term structure of the yield rates. The estimation approach was 

selected as the default approach to produce consistency between the option valuation and the term 

premium. Importance of consistency for put options from the arbitrage pricing perspective is illustrated in 

Appendix G.4.1.2. A similar argument can be applied for the call options. An increasing term structure 

implies that in the initial periods of the option life the interest rates are below the coupon rate (which includes 

the term premium component). Therefore, the increasing term structure can be viewed as an effective 

barrier to exercise the call option early and the barrier reduces the value of the call option. The steeper is 

the barrier, the larger is the negative impact on the call option value.14 

The equations for the Vasicek and CIR model are presented below. The equations for Hull-White (extended 

Vasicek) and Hull-White (extended CIR) models are presented in Appendix C.2. 

3.4.1 Vasicek model 

The interest rate term structure is described by the following equation 

𝑇𝑅𝑇 = 𝐵(𝑇) × 𝑟0 +∫ 𝜗(𝑠) × 𝐵(𝑠, 𝑇) × 𝑑𝑠 −
𝜎2

2𝛼2
× (𝑇 − 𝐵(𝑇)) +

𝜎2𝐵(𝑇)2

4𝛼

𝑇

0

 

where 𝐵(𝑇) =
1−𝑒−𝛼𝑇

𝛼
.  The equation can also be represented as follows. 

                                                      

13 Parameter 𝜃 does not have an impact on the standard deviation and for simplicity is set to zero.  

14 As illustrated in Appendix G.4.1.2, the impact on the put option is the opposite. The larger is the term structure, the higher is the 
incentive to exercise the put option early and get the benefit of the term premium. Therefore, the higher is the term premium, the larger 
is the positive impact on the put option value. 
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∫ 𝜗(𝑠) × 𝐵(𝑠, 𝑇) × 𝑑𝑠 = 𝑇𝑅𝑇 − 𝑟0 × 𝐵(𝑇) +
𝜎2

2𝛼2
× (𝑇 − 𝐵(𝑇)) −

𝜎2𝐵(𝑇)2

4𝛼
= 𝐺(𝑇)

𝑇

0

 

where  

(3.7)  𝐺(𝑇) = [𝑇𝑅𝑇 − 𝐵(𝑇) × 𝑟0] +
𝜎2

2𝛼2
× (𝑇 − 𝐵(𝑇)) −

𝜎2𝐵(𝑇)2

4𝛼
 

As 𝛼 → 0, the function 𝐺(𝑇) converges to the following function15 

(3.8)  𝐺(𝑇, 𝛼 → 0) = 𝑇(𝑅𝑇 − 𝑟0) +
𝜎2𝑇3

6
 

 

If the drift parameter 𝜗 is constant, then equations (3.8) and (C.10) are estimated for the maturity term 

𝑡𝑖+1 = 𝑇 only (𝑡𝑖 = 0) and the drift parameter is described by the following equations. 

(3.9)  𝜗 = 𝛼
𝐺(𝑇)

𝑇 − 𝐵(𝑇)
 

for 𝛼 > 0 and 

(3.10)  𝜗 = 2
𝐺(𝑇)

𝑇2
= 2

(𝑅𝑇 − 𝑟0)

𝑇
+
𝜎2𝑇

3
 

for 𝛼 = 0.  

Equation (3.10) can also be validated by estimating parameter 𝜗 directly from the Vasicek zero-coupon 

bond price equation described in the Exhibit 2.2.16 

3.4.2 CIR model 

The interest rate term structure is described by the following equation 

𝑇𝑅𝑇 = 𝐵(𝑇) × 𝑟0 +∫ 𝜗(𝑠) × 𝐵(𝑠) × 𝑑𝑠
𝑇

0

 

where 𝐵(𝑇) =
2×(𝑒𝛾𝑇−1)

(𝛾+𝛼)×(𝑒𝛾𝑇−1)+2𝛾
. Similar to the Vasicek model, the equation can be represented as 

∫ 𝜗(𝑠) × 𝐵(𝑠) × 𝑑𝑠 = 𝐺(𝑇)
𝑇

0

 

                                                      

15 
𝜎2

2𝛼2
× (𝑇 − 𝐵(𝑇)) −

𝜎2𝐵(𝑇)2

4𝛼
→

𝜎2

2𝛼2
× (𝛼

𝑇2

2
− 𝛼2

𝑇3

6
) −

𝜎2

4𝛼
× (𝑇2 − 𝛼𝑇3) = −

𝜎2𝑇3

12
+

𝜎2𝑇3

4
=

𝜎2𝑇3

6
 

16 𝑇𝑅𝑇 = − ln𝐴(𝑇) + 𝐵(𝑇) × 𝑟0 = (𝜗 −
𝜎2

2𝛼
) ×

(𝑇−𝐵)

𝛼
+

𝜎2𝐵2

4𝛼
+ 𝐵(𝑇) × 𝑟0 or 𝜗 = 𝛼

[𝑇𝑅𝑇−𝐵(𝑇)×𝑟0]+
𝜎2

2𝛼2
(𝑇−𝐵)−

𝜎2𝐵2

4𝛼

𝑇−𝐵
= 𝛼

𝐺(𝑇)

𝑇−𝐵
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where 

(3.11)  𝐺(𝑇) = 𝑇𝑅𝑇 − 𝐵(𝑇) × 𝑟0 

As before, suppose that 𝑡0 = 0, 𝑡1, … , 𝑡𝑛−1, 𝑡𝑛 = 𝑇 are discrete periods with observed market yield rates 𝑅𝑖 and 

respective values of the function 𝐺(𝑇) equal to 𝐺𝑖.  

In the case of constant parameter 𝜗(𝑡) = 𝜗, parameters 𝑡𝑖 and 𝑡𝑖+1 are set to 𝑡𝑖 = 0 and 𝑡𝑖+1 + 𝑇. The equations 

(3.11) and (C.11) can be represented then as follows 

(3.12)  𝜃 =
𝛾2 − 𝛼2

2
×

𝑇𝑅𝑇 −𝐵(𝑇) × 𝑟0
−(𝛾 + 𝛼) × 𝑇 + 2 × (ln[(𝛾 + 𝛼) × 𝑒𝛾T + (𝛾 − 𝛼)] − ln 2𝛾)

 

and 

(3.13)  𝜃 =
𝛾2

2
×

𝑇𝑅𝑇 −𝐵(𝑇) × 𝑟0
−𝛾𝑇 + 2 × (ln[𝑒𝛾𝑇 + 1] − ln 2)

 

Equation (3.13) can also be validated by estimating parameter 𝜗 directly from the CIR zero-coupon bond 

price equation described in the Exhibit 2.2.17 

3.5 Mean-reversion parameter 

There are currently two default approaches to set the mean-reversion parameter 

(i) Calibrate the mean-reversion parameter to match a long-term equilibrium yield rate. 

(ii) Estimate mean-reversion parameter based on Hodrick-Prescott (HP) filter model. 

(iii) Set mean-reversion parameter to zero, which corresponds to the random walk model of the yield 

rates. Note that random walk model is non-stationary and does not have a long-term equilibrium.  

The two approaches are discussed below. Oher approaches are discussed in Appendix C.3. 

3.5.1 Mean-reversion parameter calibrated to long-term equilibrium 

Under the approach, mean-reversion parameter is estimated from the following equation, which relates 

mean-reversion parameter to the interest rate long-term equilibrium value. 

(3.14)  𝑟∗ =
𝜃

𝛼
 

Note that under the approach, the estimation of the mean-reversion parameter is effectively reduced to 

estimation of the interest rate long-term equilibrium value. The long-term equilibrium can be estimated for 

example using x-year moving average of the interest rates. 

                                                      

17 𝑇𝑅𝑇 = − ln𝐴(𝑇) + 𝐵(𝑇) × 𝑟0 = −
2𝜗

𝜎2
× ln

2𝛾𝑒(𝛾+𝛼)𝑇/2

(𝛾+𝑎)×(𝑒𝛾𝑇−1)+2𝛾
+ 𝐵(𝑇) × 𝑟0 or 𝜗 =

𝜎2

2
×

𝑇𝑅𝑇−𝐵(𝑇)×𝑟0

ln[(𝛾+𝑎)×(𝑒𝛾𝑇−1)+2𝛾]−ln2𝛾−
(𝛾+𝛼)𝑇

2

=
𝛾2−𝛼2

2
×

𝑇𝑅𝑇−𝐵(𝑇)×𝑟0

−(𝛾+𝛼)𝑇+2×[ln(𝛾+𝑎)𝑒𝛾𝑇+(𝛾−𝑎)−ln2𝛾]
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3.5.2 Mean-reversion parameter based on Hodrick-Prescott filter model 

The mean reversion parameter is estimated based on the following equation 

(3.15)  𝑑𝑟𝑡 = 𝑎 × (�̃�𝑡 − 𝑟𝑡) × 𝑑𝑡 + 𝜎(𝑟𝑡) × 𝑑𝑊𝑡 

where �̃�𝑡 is interpreted as the long-term trend component and 𝑎 is the mean reversion parameter.18 The 

equation is using HP filter as follows.  

(i) Estimate long-term and cyclical component of the yield series, denoted respectively as �̃�𝑡 and 𝜀𝑡
𝑐𝑦𝑐

=

�̃�𝑡 − 𝑟𝑡. 

(ii) Estimate linear regression 𝑑𝑟𝑡 = 𝛼 × 𝜀𝑡
𝑐𝑦𝑐

× 𝑑𝑡 + 𝜎(𝑟𝑡) × 𝑑𝑊𝑡. The estimate of the 𝛼 parameter in 

the linear regression equation is the model mean-reversion parameter. 

(iii) Estimate volatility parameter 𝜎(𝑟𝑡) based on the residuals of the linear regression model. 

The time-varying long-term trend �̃�𝑡 in the interest rate model is replaced with a constant equilibrium value 

𝑟∗. There are three alternative approaches to select the 𝑟∗ parameter: 

(i) Set 𝑟∗ equal to the most recent long-term trend parameter �̃�𝑡 

(ii) Set 𝑟∗ =
𝜃

𝛼
, where drift parameter 𝜃 is estimated as discussed in the previous section. 

(iii) Set 𝑟∗ based on expert judgement (for example, set it equal to the long-term average interest rate) 

Note that estimation of the long-term equilibrium is effectively equivalent to the estimation of drift parameter, 

which are related through the equation (3.14).19  

3.5.3 Random walk model 

Under the random walk model of the interest rates, the mean-reversion parameter is set to zero. 

3.6 Coupon rate 

Original coupon rate 𝑐 is estimated based on the observed term structure. However, after calibrating the 

volatility and drift parameters and generating the corresponding theoretical term structure described by 

equation (hw.vsk.1), the bullet price of the bond may not match the bond par value. The coupon rate 𝑐∗ is 

solved for implicitly so that the bullet value of the bond equals to the bond par value.20,21 

The coupon rate is estimated based on the following equation of the bond par value: 

                                                      

18 Mean –reversion parameter must be positive so that the interest rate reverts to the long-term trend whenever it is above/below the 
trend. 

19 Equation (3.14) can be viewed not only as the equation that relates mean-reversion to the long-term equilibrium, but also as an 
equation which relates drift to the long-term equilibrium. 

20 Note that if the bond bullet value is different from the par value, it may be optimal to exercise the bond in period 𝑡 = 0 immediately 
at the bond issue date. The adjustment of the coupon rate is performed to rule out the above cases.  

21 An alternative approach is to shift the term structure of the interest rates. However, in the case of CIR and Hull-White (extended 
CIR) models a shift in the term structure results in a different volatility function and as a result the distribution over the interest rate 
tree must also be recalculated. Calibration of the coupon rate is a more efficient approach to ensure that the bond is priced at par at 

𝑡 = 0. 
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∑𝐷𝑡 × 𝐶𝑡 +∑𝐷𝑡 × 𝑃𝑡
𝑡

= 100

𝑡

 

where 𝐶𝑡 are bond coupon payments, 𝑃𝑡 are bond principal repayments, and 𝐷𝑡 are zero coupon prices. 

The coupon estimation approach depends on the structure of the bond cash flows. Two cases are 

considered: 

► Case A: The bond has interest deferral provision and accrued interest is capitalized over the 

interest deferral period. In this case, the cash flow is a non-linear function of the bond coupon rate 

and therefore cannot be solved explicitly. The coupon rate that generates the bond par value is 

estimated numerically by solving the above implicit equation for the coupon rate. At each iteration 

the expression ∑ 𝐷𝑡 × 𝐶𝑡𝑡 + ∑ 𝐷𝑡 × 𝑃𝑡𝑡  is estimated by running a backward recursion procedure. 

► Case B: the bond cash flow structure is different from the structure described in Case A. In this 

case, the cash flow is a linear function of the bond coupon rate. Therefore, the coupon rate that 

generates the bond par value can be estimated as follows: 

𝑐∗ = 𝑐0 × [
100 − ∑ 𝐷𝑡 × 𝑃𝑡𝑡

∑ 𝐷𝑡 × 𝐶0,𝑡𝑡

] 

where 𝑐0 > 0 is an arbitrary coupon rate. The equation is estimated by (i) running backward 

recursion for the repaid principal cash flows 𝑃𝑡 to estimate ∑ 𝐷𝑡 × 𝑃𝑡𝑡  numerator; (ii) running 

backward recursion for the coupon cash flow payment 𝐶0,𝑡 to estimate ∑ 𝐷𝑡 × 𝐶0,𝑡𝑡  denominator; 

and (iii) applying the above equation. 

In the case of Vasicek or Hull-White (extended Vasicek) models, the term structure adjustment can be used 

as an alternative to the coupon adjustment. The option is selected whenever the coupon must be set fixed 

at the actual bond coupon payment. 

3.7 Summary 

Parameter estimation procedure is summarized as follows. 

► Model selection. The formulas applied to estimate the parameters of the model depend on the 

selected model. 

► Variance. The variance parameter is estimated based on the historical sample of short-term yield 

rates  

► using equation (3.5) for the Vasicek and Hull-White (extended Vasicek) models; and  

► using equation (3.6) for the CIR and Hull-White (extended CIR) models. 

► Drift. The drift parameter is estimated to approximate the term structure linear slope using the 

following equations. 

► Equations (C.10) for the Hull-White (extended Vasicek) model;  

► Equations (3.9) – (3.10) for the Vasicek model;  

► Equations (C.11) for the Hull-White (extended CIR) model; and  

► Equations (3.12) – (3.13) for the CIR model. 

► Mean-reversion. The mean reversion parameter is either  

► calibrated to match the interest rate long-term equilibrium;  

► estimated using HP filter model; or  
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► is set to zero assuming a random walk model of interest rates.  

► Coupon rate. The coupon rate is estimated numerically so that the price of the bullet bond is equal 

to par value.  

Conditional on the estimated parameters, zero-coupon bond prices and the term structure of the interest 

rate process are estimated as follows. 

► Zero-coupon bond prices. Prices of zero-coupon bond prices are estimated as  

𝑃(𝑇) = 𝐴(𝑇) × 𝑒−𝐵(𝑇)𝑟0 

where functions 𝐴(𝑇) and 𝐵(𝑇) are described for different processes in the Exhibit 2.2. More 

detailed equations for the function 𝐴(𝑇) for the case of the Hull-White models are provided in the 

Appendix A. Specifically 

► Equations (A.5) – (A.7) for 𝛼 > 0 and equations (A.8) – (A.10) for 𝛼 = 0 parameter of the Hull-

White (extended Vasicek) model; and 

► Equations (A.14) – (A.16) for 𝛼 > 0 and equations (A.17) – (A.18) for 𝛼 = 0 parameter of the 

Hull-White (extended CIR) model;  

► Term structure. The term structure is derived directly from the zero-coupon bond prices using the 

equation below 

𝑅(𝑇) = −
ln𝑃(𝑇)

𝑇
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Section 4 Numerical Modelling 
  

  

The steps in the numerical modelling of the interest rate options can be summarized as follows. 

1. Estimate the discount factors applied in the interest rate option numeric calculations; 

2. Estimate the tree of interest rate states and probability distribution over the states, which is derived 

from the respective interest rate stochastic process; 

3. Estimate the bond cash flows; 

4. Estimate numerically the bond value (both the bullet value and the callable/putable bond value). 

Each step of the modelling process is summarized below.  

4.1 Discount factors 

Discount factors are calculated as  

𝐷[𝑑𝑡] = 𝐴 × 𝑒−𝐵𝑟0  

For a selected (small) time increment 𝑑𝑡 the discount factor can be approximated as  

𝐷[𝑑𝑡] = 𝑒−𝑑𝑡×𝑟0 

In practice selected tree step 𝑑𝑡 may not be small (the default value in the option calculation tool is 𝑑𝑡 =

0.25). Therefore, it is preferable to use actual bullet prices as discount factors, which depend on the selected 

family of the interest rates. The equations for the Vasicek and CIR bullet prices were summarized in 

Sections 2.2 and 2.3. 

4.2 Interest rate tree estimation 

The interest rate tree estimation includes two steps: (i) construction of the tree states and estimation of the 

tree states probabilities. The steps are summarized in more detail below. 

1. Construction of the interest rate tree states 

► Discretize the time/space set of interest rate states.  

► To discretize the time a tree step is selected (by default the tree step is set to three-months 

period, 𝑑𝑡 = 0.25). The grid of discrete time periods is set to be uniform. 

► The minimum and maximum bounds of the interest rates are estimated. The bounds are 

estimated in such a way that the probability of the interest rate process to move outside the 

bounds is smaller than some small threshold value. 

► The grid of interest rates is constructed within the estimated bounds. For the Vasicek and Hull-

White (extended Vasicek) models the grid is set uniform. For the CIR and Hull-White (extended 

CIR) models the grid is constructed so that 
∆𝑟𝑡

√𝑟𝑡
 are distributed uniformly.  

2. Estimation of the tree states probabilities. 

► The set of states in period 𝑡 = 0 consists of a single state 𝑟0, which is assigned probability one. 
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► For each period 𝑡 and state 𝑟𝑡,𝑖, transition probabilities 𝑞𝑗 = 𝑄𝑖,𝑗(𝑡, 𝑡 + 𝑑𝑡) are constructed using 

the mean and standard deviation functions 𝜇(𝑡, 𝑟𝑡) and 𝜎(𝑡, 𝑟𝑡) of the selected interest rate 

process. 

► Due to the fact that the states 𝑟𝑡+𝑑𝑡,𝑗 are discrete, the numerical mean and standard deviation of 

the change in interest rates 𝑑𝑟𝑡,𝑖 will generally be different from the values of 𝜇(𝑡, 𝑟𝑡) and 𝜎(𝑡, 𝑟𝑡) 

functions. We apply two alternative approaches to adjust the transition probabilities.  

Under the default “contraction mapping” approach, parameters 𝜇(𝑡, 𝑟𝑡) and 𝜎(𝑡, 𝑟𝑡) are adjusted 

to parameters �̃�(𝑡, 𝑟𝑡) and �̃�(𝑡, 𝑟𝑡) such that the mean and standard deviation parameters of the 

discrete distribution matches the actual parameters 𝜇(𝑡, 𝑟𝑡) and 𝜎(𝑡, 𝑟𝑡).  

Under an alternative approach, the transition probabilities 𝑞𝑗 estimated using actual parameters 

𝜇(𝑡, 𝑟𝑡) and 𝜎(𝑡, 𝑟𝑡) are adjusted to new probabilities �̃�𝑗 such that under the adjusted probabilities 

(i) the mean and standard deviation parameters of the discrete distribution matches the actual 
parameters 𝜇(𝑡, 𝑟𝑡) and 𝜎(𝑡, 𝑟𝑡) and (ii) the distance between probabilities �̃�𝑗 and 𝑞𝑗 is minimized. 

Because the transition probabilities are adjusted to match the theoretical transition probabilities 

functions, the estimated numerical distribution of interest rates must match closely the 

theoretical distributions. Therefore, the validation of the numerical calculations using the interest 

rate distribution parameters (described in Section 5) should produce very close numbers 

between the numerical and theoretical mean and standard deviation estimates.  

A more detailed discussion of modelling transition probabilities is provided in the Appendix B.3.  

3. Remove the states with the estimated transition probabilities to reach the state below a certain 

small threshold value.  

 

4.3 Estimation of bond cash flows 

The next step is to estimate the cash flows in the bond transaction paid by the borrower (received by the 

lender) assuming two scenarios: (i) the bond is outstanding and (ii) the bond is redeemed.  

If the bond is not redeemed, then the cash flows may include the following components (which can be set 

in the option tool). 

► Bond coupon payments. The coupon rate and coupon payment frequency must be set to estimate 

the coupon payments; 

► Interest deferral provision. If the bond has interest deferral provision, then the interest payments 

are assumed to be capitalized and repaid after the termination of the interest deferral period; 

► Bond principal repayment.  

► Bond amortization schedule. 

If the bond is redeemed, then the redemption value is estimated based on the specified redemption terms. 

► If the bond is redeemed prior to the make-whole provision termination date, then the cost of calling 

the bond is assumed to be infinite in the option tool. The option will never be exercised prior to the 

make-whole termination date; 

► If the bond is redeemed after the make-whole provision termination date, then the redemption value 

is estimated based on the provided redemption penalty structure. If there is no penalty, then the 

redemption value equals the sum of bond principal value and the accrued interest amount. 
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As discussed in the previous section, bond coupon rate is an endogenous parameter in the option tool and 

is estimated so that the bullet value of the generated bond cash flows equals to the bond par value.  

4.4 Option price estimation 

The steps of the option estimation procedure are summarized as follows: 

1. Estimate forward prices: 

(4.1)  𝑃𝑡,𝑖
𝜏,∗ = 𝐷𝑡,𝑖 ×∑𝑄𝑖,𝑗(𝑡, 𝑡 + 𝑑𝑡)

𝑗

× 𝑃𝑡+𝑑𝑡,𝑖
𝜏−𝑑𝑡,∗

 

where 𝑃𝑡,𝑖
0,∗ = 1. The forward prices are applied for the following reasons: 

► Estimate bullet prices 

► Estimate the term structure 

► Estimate the option value after the option is exercised for a non-zero notice period. 

 

2. Estimate the bond bullet value. The bond bullet value is calculated using the backward recursion. 

The bond value is estimated first at the maturity date 𝑡 = 𝑇. The value is then estimated backwards. 

Assuming that the value is estimated in period 𝑡 + 𝑑𝑡, the value in period 𝑡 is estimated using the 

following equation 

(4.2)  𝑃𝑡,𝑖
∗ = 𝑐𝑡 × 𝑑𝑡 + 𝐷𝑡,𝑖 ×∑𝑄𝑖,𝑗(𝑡, 𝑡 + 𝑑𝑡)

𝑗

× 𝑃𝑡+𝑑𝑡,𝑖
∗  

where 𝑃𝑡,𝑖
∗  is the bond bullet price, 𝐷𝑡,𝑖 is the discount factor, 𝑐𝑡 is the cash flow paid by the bond, 

and 𝑄𝑖,𝑗(𝑡, 𝑡 + 𝑑𝑡) are interest rate transitional probabilities. Alternatively, the bullet prices can be 

estimated using the forward prices: 

(4.3)  𝑃𝑡,𝑖
∗ =∑𝑃𝑡,𝑖

𝜏,∗ × 𝑐𝜏 × 𝑑𝑡

𝑇

𝜏=1

 

The bullet value will generally be different from the bond par value. As a result, it is potentially 

possible that it is optimal to exercise the option in period 𝑡 = 0. 

3. Shift the term structure of interest rates (by modifying parameter 𝑟0 in the term structure equation) 

so that the bond bullet value equals the par value. Note that the discount rates 𝐷𝑡,𝑖 (and respectively 

the bond bullet price) decrease uniformly with the increase in 𝑟0. Therefore, there is a unique value 

of 𝑟0 such that the bond bullet value equals the par value. 

4. Estimate the callable (putable) bond value. The borrower minimizes the cost of the bond by solving 

the following optimization problem in each period 𝑡 and state 𝑟𝑖. 

(4.4)  𝑃𝑡,𝑖 = min [�̂�𝑡,𝑖 , 𝑐𝑡 × 𝑑𝑡 + 𝐷𝑡,𝑖 ×∑𝑄𝑖,𝑗(𝑡, 𝑡 + 𝑑𝑡)

𝑗

× 𝑃𝑡,𝑖] 

where 𝑃𝑡,𝑖 is the callable bond price, and �̂�𝑡,𝑖 is the bond redemption value.   
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In the case of the putable bond, the lender maximizes the bond value. Therefore, the above 

equation is modified accordingly. Note that as part of the option value calculation, the algorithm 

also estimates the set of states in which the option is exercised / not exercised. Formally we define 

the function indicator of the interest rate tree states in which the option is exercised (not exercised) 

as follows: 

(4.5)  𝒜(𝑡, 𝑟𝑖) = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑏𝑜𝑛𝑑 𝑖𝑠 𝑟𝑒𝑑𝑒𝑚𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑡𝑒 (𝑡, 𝑟𝑖)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

5. Estimate the value of the option as the difference between the value of the callable (putable) bond 

and the value of the bullet bond (bond par value). 

The equation (4.4) is solved using standard backward recursion methods, starting from period 𝑡 = 𝑇 (when 

the bond principal is fully repaid and the price 𝑃𝑇,𝑖 equals the bond redemption value, and moving backwards 

to period 𝑡 = 0. The backward recursion in the ac.finance.SRM tool is designed to maximize the objective 

function. Therefore, for the callable bonds the cash flows and the bond redemption functions are reversed 

to the negative sign and minimization is reversed to maximization. (No change is required for the putable 

bonds).  

4.5 Option premium (discount) estimation 

The option price estimated above is a fixed price that should be accounted for as a bond price discount for 

callable bond (premium for putable bond). However, in the interest benchmarking analysis the price should 

be converted to the bond interest rate premium for callable bond (interest rate discount for putable bond). 

Note that the payment of the interest rate premium (discount) is conditional on the fact whether the bond 

was redeemed or not. Suppose that 𝐴0 is the price of the security that pays 𝑑𝑡 cash flow in each state of 

the process in which the option is not exercised (each state (𝑡, 𝑟𝑖) such that 𝒜(𝑡, 𝑟𝑖) = 0. The value of 𝐴0 is 

referred to as the annuity adjustment factor. The value of 𝐴0 can be calculated numerically using the 

backward recursion procedure described by the following equation: 

𝐴𝑡,𝑖
0 = {

0, 𝑖𝑓 𝑡 = 0 𝑜𝑟 𝑜𝑝𝑡𝑖𝑜𝑛 𝑤𝑎𝑠 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒𝑑 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝑡
𝑑𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

+ ∑ 𝐷𝑡,𝑗 × 𝑄𝑖,𝑗(𝑡, 𝑡 + 𝑑𝑡)

𝑗:𝒜(𝑡+𝑑𝑡,𝑟𝑗)=0

× 𝐴𝑡+𝑑𝑡,𝑗
0  

where 𝒜𝑡,𝑖
0 = {

0, 𝑖𝑓 𝑡 = 0 𝑜𝑟 𝑜𝑝𝑡𝑖𝑜𝑛 𝑤𝑎𝑠 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒𝑑 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝑡
𝑑𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 is the objective function used in the 

backward recursion procedure. The option premium (discount) 𝜋 is calculated as follows. 

(4.6)  𝜋 =
𝑃

𝐴0
 

where 𝑃 is the option price and 𝐴0 is the annuity adjustment factor. 
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Section 5 Model Validation 
  

  

Numerical estimation of the call or put option involves the following steps: 

1. Construction of the interest rate tree, which models stochastic movement in the interest rates; 

2. Estimation of the bond bullet value (assuming no option is present); 

3. Estimation of the bond value in the presence of the option assuming that the borrower (lender) 

chooses whether to exercise the option so that to minimize the cost of the bond (maximize the bond 

value); 

Whenever possible the numerical calculations should be validated against theoretical values. In the case 

of the option estimation algorithm, the following components of the numerical calculations can be validated: 

1. Interest rate distribution. Construction of the interest rate tree involves two steps: (i) construction 

of the discrete set of tree states, and (ii) estimation of the interest rate distribution over the discrete 

set of states. After the interest rate tree is constructed, the mean and standard deviation of the tree 

states are estimated for each period based on the constructed discrete set of states and state 

probabilities. The numerical distribution of states can be validated against the theoretical 

distributions derived in section 4.1. In practice we validate the state distribution only at the maturity 

term 𝑡 = 𝑇. 

2. Implied model parameters. In practice it may difficult to interpret how material is the deviation of 

the terminal distribution mean and standard deviation from the theoretical values. As part of the 

model validation process, the terminal distribution mean and standard deviation are converted into 

the implied theoretical model parameters. The implied model parameters are compared then with 

the actual values used in the model estimation. The details of implied parameters estimation are 

provided in the Appendix B.3 and are summarized in the exhibit of Section 5.2.. 

3. Bond bullet prices. Bond bullet prices are estimated numerically as part of the option calculations. 

The formulas for the bond bullet prices were also provided in Section 2. The numerical estimates 

of the bond bullet prices can be validated against their theoretical values. 

4. Zero volatility parameter. 

5. DerivaGem tool. DerivaGem is an option tool developed by John Hull and described in detail in 

the Appendix E. DerivaGem implements Hull-White(extended Vasicek) model and therefore the 

output of this interest rate option valuation tool can be validated directly against the output of the 

DerivaGem tool. The DerivaGem Lognormal model does not correspond to Hull-White(extended 

CIR) model and therefore cannot be used to validate it. 

 

5.1 Terminal distribution parameters 

To validate the numerically estimated distributions of the interest rates against the theoretical values, we 

need to derive the average and standard deviation of the interest rate distribution for each period 𝑡 (including 

𝑡 = 𝑇). The formulas for the interest rate distribution for different families of interest rate models are 

summarized in the exhibit below. 
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Exhibit 5.1 Summary of interest rate distribution parameters 

Model name Mean Variance 

Vasicek (1977) 

𝜇 =
𝜗

𝛼
+ 𝑒−𝛼𝑡 × (𝑟 −

𝜗

𝛼
) 

in the case 𝛼 = 0 

𝜇 = 𝑟 + 𝜗𝑡 

𝜈𝑡 =
𝜎2

2𝛼
× (1 − 𝑒−2𝛼𝑡) 

in the case 𝛼 = 0 

𝜈𝑡 = 𝜎2 × 𝑡 

Hull-White 

(extended Vasicek, 

1990) 

𝜇 = 𝑒−𝛼𝑡 × [𝑟 + ∫ 𝑒𝛼𝑠
𝑡

0

𝜗(𝑠)𝑑𝑠] 

in the case 𝛼 = 0 

𝜇 = 𝑟 + Θ(𝑡) 

𝜈𝑡 =
𝜎2

2𝛼
× (1 − 𝑒−2𝛼𝑡) 

in the case 𝛼 = 0 

𝜈𝑡 = 𝜎2 × 𝑡 

Cox – Ingersoll – 

Ross (1985) 

𝜇 =
𝜗

𝛼
+ 𝑒−𝛼𝑡 × (𝑟 −

𝜗

𝛼
) 

in the case 𝛼 = 0 

𝜇 = 𝑟 + 𝜗𝑡 

𝜈𝑡 = 𝜎2 × [
𝑟

𝛼
× 𝑒−𝛼𝑡 × (1 − 𝑒−𝛼𝑡) +

𝜗

𝛼2

× (
1

2
− 𝑒−𝛼𝑡 +

1

2
𝑒−2𝛼𝑡)] 

in the case 𝛼 = 0 

𝜈𝑡 = 𝜎
2 × [𝑟𝑡 + 𝜗 ×

𝑡2

2
] 

Hull-White 

(extended CIR, 

1990) 

𝜇 = 𝑒−𝛼𝑡 × [𝑟 + ∫ 𝑒𝛼𝑠
𝑡

0

𝜗(𝑠)𝑑𝑠] 

in the case 𝛼 = 0 

𝜇 = 𝑟 + ∫ 𝜗(𝑠)𝑑𝑠
𝑡

0

 

𝜈𝑡 =
𝜎2 × 𝑒−2𝛼𝑡

𝛼
× [𝑟 × (𝑒𝛼𝑡 − 1)

+∫ 𝑒𝑎𝑢 × (𝑒𝑎𝑡 − 𝑒𝑎𝑢) × 𝜗𝑢

𝑡

0

𝑑𝑢] 

in the case 𝛼 = 0 

𝜈𝑡 = 𝜎
2 × [𝑟𝑡 + ∫ (𝑡 − 𝑢)𝜗𝑢𝑑𝑢

𝑡

0

] 

As discussed above, the transition probabilities in the numerical model are adjusted so that to approximate 

closely theoretical 𝜇(𝑡, 𝑟𝑡) and 𝜎(𝑡, 𝑟𝑡) parameters of the selected interest rate process. Therefore, the 

parameters of the numerically calculated interest rate distribution should match closely the theoretical 

parameters summarized in the Exhibit 5.1 above. 

For the stepwise constant drift function, the above equations with the integrals replaced by respective 

summations are provided in the Appendix B. Appendix B also provides details on how to derive the above 

equations. 

5.2 Implied model parameters 

The implied parameters are estimated as follows. 

► First, we estimate the implied drift parameter based on the terminal distribution mean value. Note 

that since Hull-White (extended Vasicek and CIR) models have a time-dependent drift parameter, 

we estimate the average value of the drift parameter. The estimates for the constant implied drift 

parameter are described in the Appendix B.1.3 by equation (B.3) for 𝛼 > 0 and equation (B.4) for 

𝛼 = 0 and are summarized in the Exhibit 5.2 below. 

► Next, we estimate the implied volatility parameter conditional on the estimated drift parameter. In 

the case of Hull-White (extended Vasicek and CIR) models, we substitute the average constant 
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drift parameter in the terminal distribution variance equation and derive the respective implied 

variance parameter.   

► In the case of Vasicek and Hull-White (extended Vasicek) models the implied volatility 

parameters are described by equation (B.5) for 𝛼 > 0 and equation (B.6) for 𝛼 = 0 and are 

summarized in the Exhibit 5.2 below. 

► In the case of CIR and Hull-White (extended CIR) models the implied volatility parameters are 

described by equation (B.9) for 𝛼 > 0 and equation (B.10) for 𝛼 = 0 and are summarized in the 

Exhibit 5.2 below 

The equations for the implied model parameters are summarized in the Exhibit 5.2 below. 

Exhibit 5.2  Summary of interest rate distribution parameters 

Model name Mean Variance 

Vasicek (1977) and 

Hull-White 

(extended Vasicek, 

1990) 

𝜗 = 𝛼 ×
𝜇𝑇 − 𝑟𝑒

−𝛼𝑇

1 − 𝑒−𝛼𝑇
 

in the case 𝛼 = 0 

𝜗 =
𝜇𝑇 − 𝑟

𝑇
 

𝜎 = 𝜎𝑇 × √
2𝛼

1 − 𝑒−2𝛼𝑇
 

in the case 𝛼 = 0 

𝜎 = 𝜎𝑇 × √
1

𝑇
 

Cox – Ingersoll – 

Ross (1985) and 

Hull-White 

(extended CIR, 

1990) 

𝜗 = 𝛼 ×
𝜇𝑇 − 𝑟𝑒

−𝛼𝑇

1 − 𝑒−𝛼𝑇
 

in the case 𝛼 = 0 

𝜗 =
𝜇𝑇 − 𝑟

𝑇
 

𝜎 =
𝜎𝑇

√𝑟
𝛼
× 𝑒−𝛼𝑡 × (1 − 𝑒−𝛼𝑡) +

𝜗
𝛼2
× (

1
2
− 𝑒−𝛼𝑡 +

1
2
𝑒−2𝛼𝑡)

 

in the case 𝛼 = 0 

𝜎 =
𝜎𝑇

√𝑟𝑇 + 𝜗 ×
𝑇2

2

 

 

5.3 Validation against deterministic model 

The objective of the validation approach is to simplify the model so that the stochastic model is converted 

to a deterministic model which can be estimated simple NPV calculations. Basically, the objective of the 

validation approach is to ensure consistency of bond valuation with the limit deterministic approach. Note 

that since the deterministic approach is in many cases a default approach to valuation, it is important to 

ensure consistency in valuation and understand the source of valuation discrepancies (if any). 

To convert the stochastic into a deterministic model, we consider a limit case 𝜎 = 0. For simplicity we also 

assume 𝛼 = 0. Under the parameters both Hull-White extended Vasicek and CIR interest rate models are 

described by the following equation: 

(5.1)  𝑑𝑟𝑡 = 𝜗𝑡 × 𝑑𝑡 

or equivalently 
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(5.2)  𝑟𝑡 = ∫ 𝜗𝑠 × 𝑑𝑠
𝑡

0

 

 

 

The equation (5.2) models forward market rates. Zero-coupon prices are modelled as  

(5.3)  𝑃𝑡 = 𝑒
−∫ 𝑟𝑠×𝑑𝑠

𝑡
0 = 𝑒−∫ [∫ 𝜗𝑢×𝑑𝑢

𝑢
0 ]×𝑑𝑠

𝑡
0 = 𝑒−∫ 𝜗𝑠×(𝑡−𝑠)×𝑑𝑠

𝑡
0  

Yield rates are described respectively by the following equation 

(5.4)  𝑅𝑡 = −
ln𝑃𝑡
𝑡

=
∫ 𝜗𝑠 × (𝑡 − 𝑠) × 𝑑𝑠
𝑡

0

𝑡
 

Validation algorithm. 

(i) Drift parameter 

► Estimate the term structure {𝑦𝑗} used in the analysis 

► Estimate deterministic discount rates using the equation below 

𝑃𝑗 =
1 − 𝑦𝑗[∆1𝑃1 +⋯+ ∆𝑗−1𝑃𝑗−1]

1 + 𝑦𝑗∆𝑗
 

and 

𝑃1 =
1

1 + 𝑦1∆1
 

► Estimate forward rates using the equation below 

𝑟𝑡 = −
∆ ln𝑃𝑡
∆𝑡

 

► Estimate deterministic drift parameter using the equation below 

𝜗𝑡 =
∆𝑟𝑡
∆𝑡

 

► Compare the deterministic drifts to the drift term structure estimated by the stochastic model 

with 𝜎 → 0. The equations for the drift parameter in Hull-White Vasicek and CIR models in the 

limit 𝜎 → 0 case are summarized as follows. 

 

(ii) Bullet price 
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5.4 Validation using DerivaGem tool 

DerivaGem tool is described in detail in the Appendix E. Validation of the interest rate option estimation 

results using the DerivaGem tool is illustrated in the Appendix F.4.1.2. 
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Appendix A Zero-Coupon Bond Prices and Yield Term 
Structure 

  

  

Price of any interest rate contingent claim (denoted as 𝑓) must satisfy the following differential equation. 

(A.1)  𝑓𝑡 + (𝜙(𝑡, 𝑟) − 𝛼𝑟) × 𝑓𝑟 +
1

2
𝜎2(𝑡, 𝑟) × 𝑓𝑟𝑟 − 𝑟𝑓 = 0 

where 𝜙(𝑡, 𝑟) = 𝜗(𝑡) − 𝜆(𝑡)𝜎(𝑡, 𝑟) and 𝜆(𝑡) is the market price of interest rate risk. For simplicity, we assume 

that  

𝜆(𝑡) = 𝜆 = 0 

If 𝑓 represents the price of zero-coupon bond, then under the affine terms structure interest arte model, the 

price of a zero-coupon bond is assumed to be described by the following equation: 

𝑓 = 𝐴(𝑡, 𝑇)𝑒−𝐵(𝑡,𝑇)×𝑟 

At 𝑡 = 𝑇 the zero-coupon bond has par value, 𝑓 = 1. Therefore, the boundary conditions are described by 

the following equations 

(A.2)  𝐴(𝑇, 𝑇) = 1 and 𝐵(𝑇, 𝑇) = 0 

For the price function of the form 𝑓 = 𝐴(𝑡, 𝑇)𝑒−𝐵(𝑡,𝑇)×𝑟, the following properties hold. 

𝑓𝑡 =
𝐴𝑡
𝐴
× 𝑓 − 𝑟𝐵𝑡 × 𝑓 = (

𝐴𝑡
𝐴
− 𝑟𝐵𝑡) × 𝑓 

𝑓𝑟 = −𝐵 × 𝑓 

and 

𝑓𝑟𝑟 = 𝐵 × 𝑓 

After substituting the above equations in the equation (A.1), we obtain 

(A.3)  (
𝐴𝑡
𝐴
− 𝑟𝐵𝑡) − (𝜙(𝑡, 𝑟) − 𝛼𝑟) × 𝐵 +

1

2
𝜎2(𝑡, 𝑟) × 𝐵2 − 𝑟 = 0 

 

A.1 Vasicek and Hull-White (extended Vasicek) 

In this section, zero-coupon bond prices are derived for the Vasicek and Hull-White (extended Vasicek) 

models. 
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A.1.1 Hull-White (extended Vasicek) 

 

A.1.1.1 General case 

In the case of Hull-White (extended Vasicek) model the equation becomes 

𝑓𝑡 + (𝜗(𝑡) + 𝛼𝑏 − 𝜆𝜎 − 𝛼𝑟) × 𝑓𝑟 +
1

2
𝜎2 × 𝑓𝑟𝑟 − 𝑟𝑓 = 0 

or equivalently, assuming 

𝑏 = 0, 𝜙(𝑡, 𝑟) = 𝜗(𝑡) − 𝜆𝜎 and 𝜎2(𝑡, 𝑟) = 𝜎2 

the equation (A.3) can be presented then as follows: 

−𝑟 × [𝐵𝑡 − 𝛼𝐵 + 1] + [
𝐴𝑡
𝐴
− (𝜗(𝑡) + 𝜆𝜎) × 𝐵 +

1

2
𝜎2 × 𝐵2] = 0 

which can be equivalently represented by the following system of equations 

{

𝐵𝑡 − 𝛼𝐵 + 1 = 0
𝐴𝑡
𝐴
− (𝜗(𝑡) − 𝜆𝜎) × 𝐵 +

1

2
𝜎2 × 𝐵2 = 0

 

with the boundary conditions described by equations (A.2). 

The system of equations has the following solution: 

{
𝐵(𝑡, 𝑇) =

1 − 𝑒−𝛼(𝑇−𝑡)

𝛼

𝐴(𝑡, 𝑇) = 𝑒−∫ [(𝜗(𝑠)−𝜆𝜎)×𝐵(𝑠,𝑇)−
1
2
𝜎2×𝐵2(𝑠,𝑇)]×𝑑𝑠

𝑇
𝑡

 

or equivalently22,23,24 

(A.4)  {
𝐵(𝑡, 𝑇) =

1 − 𝑒−𝛼(𝑇−𝑡)

𝛼

𝐴(𝑡, 𝑇) = 𝑒
−[∫ [𝜗(𝑠)−𝜆𝜎]×𝐵(𝑠,𝑇)×𝑑𝑠−

𝜎2

2𝛼2
×(𝑇−𝑡−𝐵(𝑡,𝑇))+

𝜎2𝐵(𝑡,𝑇)2

4𝛼
𝑇
𝑡 ]

 

For 𝑡 = 0, the equations can be represented as follows. 

                                                      

22 ∫ 𝐵(𝑠, 𝑇)𝑑𝑠
𝑇

𝑡
= ∫

1−𝑒−𝛼(𝑇−𝑠)

𝛼
𝑑𝑠

𝑇

𝑡
=

𝑇−𝑡

𝑎
−

𝑒−𝛼(𝑇−𝑠)

𝛼2
|𝑡
𝑇 =

𝑇−𝑡

𝑎
− (

1−𝑒−𝛼(𝑇−𝑡)

𝛼2
) =

𝑇−𝑡−𝐵(𝑡,𝑇)

𝑎
. More generally, ∫ 𝐵(𝑠, 𝑇)𝑑𝑠 =

𝑡𝑖+1−𝑡𝑖

𝑎
−

𝑡𝑖+1
𝑡𝑖

𝑒−𝛼(𝑇−𝑠)

𝛼2
|𝑡𝑖
𝑡𝑖+1 =

(𝑡𝑖+1−𝑡𝑖)−(𝐵(𝑡𝑖,𝑇)−𝐵(𝑡𝑖+1,𝑇))

𝑎
. 

23 ∫ 𝐵2(𝑠, 𝑇)𝑑𝑠 = ∫
1−2𝑒−𝛼(𝑇−𝑠)+𝑒−2𝛼(𝑇−𝑠)

𝛼2
𝑑𝑠

𝑇

𝑡

𝑇

𝑡
=

𝑇−𝑡

𝛼2
− 2

𝑒−𝛼(𝑇−𝑠)

𝛼3
|𝑡
𝑇 +

𝑒−2𝛼(𝑇−𝑠)

2𝛼3
|𝑡
𝑇 =

𝑇−𝑡

𝛼2
− 2 ×

1−𝑒−𝛼(𝑇−𝑡)

𝛼3
+
1−𝑒−2𝛼(𝑇−𝑡)

2𝛼3
=

𝑇−𝑡−𝐵(𝑡,𝑇)

𝑎2
−
𝐵2(𝑡,𝑇)

2𝛼
 

24 −(𝜆𝜎) × ∫ 𝐵(𝑠, 𝑇)𝑑𝑠
𝑇

𝑡
−

1

2
𝜎2 × ∫ 𝐵2(𝑠, 𝑇)𝑑𝑠 =

𝜎2

𝛼2
× (𝑇 − 𝑡 − 𝐵)× (−

𝜆𝛼

𝜎
)−

1

2
𝜎2 [

𝑇−𝑡−𝐵

𝑎2
−

𝐵2

2𝛼
]

𝑇

𝑡
= −

𝜎2

𝛼2
× (𝑇 − 𝑡 − 𝐵) × (

𝜆𝛼

𝜎
+

1

2
) +

𝜎2𝐵2

4𝛼
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(A.5)  {
𝐵(𝑇) =

1 − 𝑒−𝛼𝑇

𝛼

𝐴(𝑇) = 𝑒
−[∫ [𝜗(𝑠)−𝜆𝜎]×𝐵(𝑠)×𝑑𝑠−

𝜎2

2𝛼2
×(𝑇−𝐵)+

𝜎2𝐵2

4𝛼
𝑇
0 ]

 

If 𝜗(𝑠) is a stepwise function, then function 𝐴(𝑇) can be estimated recursively as follows. Function 𝐴(𝑇) is 

represented equivalently as follows 

(A.6)  𝐴(𝑇) = 𝑒−𝐻(𝑇) × 𝑒
[
𝜎2

2𝛼2
×(𝑇−𝐵(𝑇))−

𝜎2𝐵(𝑇)2

4𝛼
]
 

where 

𝐻(𝑇) = ∫ [𝜗(𝑠) − 𝜆𝜎] × 𝐵(𝑠, 𝑇) × 𝑑𝑠
𝑇

0

 

Suppose that 𝐻(𝑡𝑖) has been estimated and 𝜗(𝑠) is constant on the interval [𝑡𝑖 , 𝑡𝑖+1] and is equal to 𝜗(𝑠) =

𝜗𝑖. Then 𝐻(𝑡𝑖+1) is estimated as follows. 

(A.7)  𝐻(𝑇) = ∑ (𝜗𝑖+1 − 𝜆𝜎) ×
(𝑡𝑖+1 − 𝑡𝑖) − (𝐵(𝑡𝑖 , 𝑇) − 𝐵(𝑡𝑖+1, 𝑇))

𝛼
𝑖:𝑡𝑖≤𝑇

 

Values of function 𝐴(𝑇) are estimated recursively for a stepwise constant function 𝜗(𝑠) using equations (A.6) and 

(A.7). 

A.1.1.2 Zero mean-reversion 

The formulas for the special zero mean-reversion model case are derived by taking the limit 𝛼 → 0 in the 

equations (A.4).25,26 

(A.8)  {
𝐵(𝑡, 𝑇, 𝛼 = 0) = 𝑇 − 𝑡

𝐴(𝑡, 𝑇, 𝛼 = 0) = 𝑒
−[∫ [𝜗(𝑠)−𝜆𝜎]×(𝑇−𝑠)𝑑𝑠−

𝜎2

6
×(𝑇−𝑡)3

𝑇
𝑡 ]

 

If 𝜗(𝑠) is a stepwise function, then function 𝐴(𝑇) can be estimated recursively as follows. Function 𝐴(𝑇) is 

represented equivalently as follows 

                                                      

25 𝐵(𝑇 − 𝑡) =
1−𝑒−𝛼(𝑇−𝑡)

𝛼
~
1−(1−𝛼(𝑇−𝑡)+

1

2
𝛼2×(𝑇−𝑡)2−

1

6
𝛼3×(𝑇−𝑡)3)

𝛼
= (𝑇 − 𝑡) −

1

2
𝛼(𝑇 − 𝑡)2 +

1

6
𝛼2(𝑇 − 𝑡)3 and therefore 

(𝑡𝑖+1−𝑡𝑖)−(𝐵(𝑡𝑖,𝑇)−𝐵(𝑡𝑖+1,𝑇))

𝑎
→

1

2
× ((𝑇 − 𝑡𝑖)

2 − (𝑇 − 𝑡𝑖+1)
2) = (𝑇 −

𝑡𝑖+𝑡𝑖+1

2
) × (𝑡𝑖+1 − 𝑡𝑖) 

26 −
𝜎2

𝛼2
× (𝑇 − 𝑡 − 𝐵) × (

𝜆𝑎

𝜎
+

1

2
) +

𝜎2𝐵2

4𝛼
= −

𝜎2

𝛼2
× (

1

2
𝛼(𝑇− 𝑡)2− 1

6
𝛼2(𝑇− 𝑡)3) × (𝜆𝑎

𝜎
+

1

2
) +

𝜎2

4𝛼
× [(𝑇 − 𝑡)2 − 𝛼(𝑇 − 𝑡)3] = −

𝜆𝜎

2
× (𝑇−

𝑡)2− 𝜎2

6
× (𝑇− 𝑡)3 
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(A.9)  𝐴(𝑇) = 𝑒−𝐻(𝑇) × 𝑒
𝜎2

6
×(𝑇−𝑡)3

 

where 

𝐻(𝑇) = ∫ [𝜗(𝑠) − 𝜆𝜎] × (𝑇 − 𝑠) × 𝑑𝑠
𝑇

0

 

Suppose that 𝐻(𝑡𝑖) has been estimated and 𝜗(𝑠) is constant on the interval [𝑡𝑖 , 𝑡𝑖+1] and is equal to 𝜗(𝑠) =

𝜗𝑖. Then 𝐻(𝑡𝑖+1) is estimated as follows. 

(A.10)  𝐻(𝑇) = ∑ (𝜗𝑖+1 − 𝜆𝜎) × (𝑇 −
𝑡𝑖 + 𝑡𝑖+1

2
) × (𝑡𝑖+1 − 𝑡𝑖)

𝑖:𝑡𝑖≤𝑇

 

Values of function 𝐴(𝑇) are estimated recursively for a stepwise constant function 𝜗(𝑠) using equations (A.9) and 

(A.10). 

A.1.2 Vasicek 

Vasicek is a special case of the Hull-White (extended Vasicek) model with constant parameter 𝜗(𝑡) = 𝜗. 

The formulas for the zero-coupon bond prices are simplified in this case as follows. 

A.1.2.1 General case 

After integrating the ∫ 𝜗(𝑠) × 𝐵(𝑠) × 𝑑𝑠
𝑇

𝑡
 expression27, we get the following formula 

(A.11)  

{
 

 𝐵(𝑡, 𝑇) =
1 − 𝑒−𝛼(𝑇−𝑡)

𝛼

𝐴(𝑡, 𝑇) = 𝑒
−[(𝜗−𝜆𝜎−

𝜎2

2𝛼
)×
(𝑇−𝑡−𝐵(𝑡,𝑇))

𝛼
+
𝜎2𝐵(𝑡,𝑇)2

4𝛼
]

 

 

A.1.2.2 Zero mean-reversion 

If we take the limit 𝛼 → 0 in the equations (A.5), we get the following formulas for zero-coupon bond prices 

in Vasicek model with zero mean-reversion parameter 

(A.12)  {
𝐵(𝑡, 𝑇, 𝛼 = 0) = 𝑇 − 𝑡

𝐴(𝑡, 𝑇, 𝛼 = 0) = 𝑒
−[(𝜗−𝜆𝜎)×

(𝑇−𝑡)2

2
−
𝜎2

6
×(𝑇−𝑡)3]

 

 

                                                      

27 ∫ 𝜗(𝑠) × 𝐵(𝑠) × 𝑑𝑠
𝑇

𝑡
= 𝜗 ×

𝑇−𝑡−𝐵

𝑎
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A.2 CIR and Hull-White (extended CIR) 

In this section, zero-coupon bond prices are derived for the CIR and Hull-White (extended CIR) models. 

5.4.1 Hull-White (extended CIR) 

 

5.4.1.1 General case 

In the case of Hull-White (extended CIR) model the equation becomes 

𝑓𝑡 + (𝜗(𝑡) + 𝛼𝑏 − (𝛼 + 𝜆𝜎) × 𝑟) × 𝑓𝑟 +
1

2
𝜎2 × 𝑟 × 𝑓𝑟𝑟 − 𝑟𝑓 = 0 

or equivalently, assuming 

𝑏 = 0, 𝜓 = 𝛼 + 𝜆𝜎, and 𝜎2(𝑡, 𝑟) = 𝜎2𝑟 

the equation (A.3) can be presented then as follows: 

−𝑟 × [𝐵𝑡 − 𝜓𝐵 −
1

2
𝜎2 × 𝐵2 + 1] + [

𝐴𝑡
𝐴
− 𝜗(𝑡) × 𝐵] = 0 

which can be equivalently represented by the following system of equations 

{
𝐵𝑡 − 𝜓𝐵 −

1

2
𝜎2 × 𝐵2 + 1 = 0

𝐴𝑡
𝐴
− 𝜗(𝑡) × 𝐵 = 0

 

with the boundary conditions described by equations (A.2). 

The system of equations has the following solution: 

(A.13)  {
𝐵(𝑡, 𝑇) =

2 × (𝑒𝛾(𝑇−𝑡) − 1)

(𝛾 + 𝛼 + 𝜆𝜎) × (𝑒𝛾(𝑇−𝑡) − 1) + 2𝛾

𝐴(𝑡, 𝑇) = 𝑒−∫ 𝜗(𝑠)×𝐵(𝑠,𝑇)×𝑑𝑠
𝑇
𝑡

 

where 𝛾 = √(𝛼 + 𝜆𝜎)2 + 2𝜎2. 

For 𝑡 = 0, the equations can be represented as follows. 

(A.14)  {
𝐵(𝑇) =

2 × (𝑒𝛾𝑇 − 1)

(𝛾 + 𝛼 + 𝜆𝜎) × (𝑒𝛾𝑇 − 1) + 2𝛾

𝐴(𝑇) = 𝑒−∫ 𝜗(𝑠)×𝐵(𝑠,𝑇)×𝑑𝑠
𝑇
0

 

If 𝜗(𝑠) is a stepwise function, then function 𝐴(𝑇) can be estimated recursively as follows. Function 𝐴(𝑇) is 

represented equivalently as follows 
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(A.15)  𝐴(𝑇) = 𝑒−𝐻(𝑇) 

where 

𝐻(𝑇) = ∫ 𝜗(𝑠) × 𝐵(𝑠, 𝑇) × 𝑑𝑠
𝑇

0

 

Suppose that 𝐻(𝑡𝑖) has been estimated and 𝜗(𝑠) is constant on the interval [𝑡𝑖 , 𝑡𝑖+1] and is equal to 𝜗(𝑠) =

𝜗𝑖. Then 𝐻(𝑡𝑖+1) is estimated as follows. 

(A.16)  

𝐻(𝑇) = ∑ 𝜗𝑖 × [−
2

𝛾 − 𝛼
× [𝑡𝑖+1 − 𝑡𝑖] +

4

𝛾2 − 𝛼2
𝑖:𝑡𝑖≤𝑇

× (ln[(𝛾 + 𝛼) × 𝑒𝛾𝑡𝑖+1 + (𝛾 − 𝛼)] − ln[(𝛾 + 𝛼) × 𝑒𝛾𝑡𝑖 + (𝛾 − 𝛼)])] 

Values of function 𝐴(𝑇) are estimated recursively for a stepwise constant function 𝜗(𝑠) using equations (A.15) and 

(A.16). 

5.4.1.2 Zero mean-reversion 

The formulas for the special zero mean-reversion model case are derived by taking the limit 𝛼 → 0 in the 

equations (A.13). As 𝛼 → 0, 𝛾 converges to 𝛾 = 𝜎√2 + 𝜆2 and the equations (A.13) can be represented as 

follows. 

(A.17)  {
𝐵(𝑡, 𝑇, 𝛼 = 0) =

2 × (𝑒𝛾(𝑇−𝑡) − 1)

(𝛾 + 𝜆𝜎) × (𝑒𝛾(𝑇−𝑡) − 1) + 2𝛾

𝐴(𝑡, 𝑇, 𝛼 = 0) = 𝑒−∫ 𝜗(𝑠)×𝐵(𝑠)×𝑑𝑠
𝑇
𝑡

 

With zero mean-reversion parameter equation (A.16) is described as follows. 

(A.18)  𝐻(𝑇) = ∑ 𝜗𝑖 × [−
2

𝛾
× [𝑡𝑖+1 − 𝑡𝑖] +

4

𝛾2
× (ln[𝑒𝛾𝑡𝑖+1 + 1] − ln[𝑒𝛾𝑡𝑖 + 1])]

𝑖:𝑡𝑖≤𝑇

 

 

A.2.1 CIR 

CIR is a special case of the Hull-White (extended CIR) model with constant parameter 𝜗(𝑡) = 𝜗. The 

formulas for the zero-coupon bond prices are simplified in this case as follows. 

A.2.1.1 General case 

After integrating the ∫ 𝜗(𝑠) × 𝐵(𝑠) × 𝑑𝑠
𝑇

𝑡
 expression, we get the following formula 
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(A.19)  

{
 
 

 
 𝐵(𝑡, 𝑇) =

2 × (𝑒𝛾(𝑇−𝑡) − 1)

(𝛾 + 𝑎 + 𝜆𝜎) × (𝑒𝛾(𝑇−𝑡) − 1) + 2𝛾

𝐴(𝑡, 𝑇) = [
2 × 𝛾 × 𝑒(𝛾+𝛼+𝜆𝜎)(𝑇−𝑡)/2

(𝛾 + 𝑎 + 𝜆𝜎) × (𝑒𝛾(𝑇−𝑡) − 1) + 2𝛾
]

2𝜗
𝜎2

 

 

A.2.1.2 Zero mean-reversion 

If we take the limit 𝛼 → 0 in the equations (A.19), we get the following formulas for zero-coupon bond prices 

in CIR model with zero mean-reversion parameter 

(A.20)  

{
 
 

 
 𝐵(𝑡, 𝑇, 𝛼 = 0) =

2 × (𝑒𝛾(𝑇−𝑡) − 1)

(𝛾 + 𝜆𝜎) × (𝑒𝛾(𝑇−𝑡) − 1) + 2𝛾

𝐴(𝑡, 𝑇, 𝛼 = 0) = [
2 × 𝛾 × 𝑒(𝛾+𝜆𝜎)(𝑇−𝑡)/2

(𝛾 + 𝜆𝜎) × (𝑒𝛾(𝑇−𝑡) − 1) + 2𝛾
]

2𝜗
𝜎2
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Appendix B Interest Rate Distribution Parameters 
  

  

The derived mean and variance parameters of the interest rate distribution are applied to validate the 

numerically calculated distribution of the interest rates. The mean and variance are estimated based on the 

interest rate model 

𝑑𝑟𝑡 = (𝜗(𝑡) − 𝑎𝑟𝑡) × 𝑑𝑡 + 𝜎(𝑡, 𝑟𝑡) × 𝑑𝑊𝑡 

which can be equivalently represented as  

𝑟𝑡+𝑑𝑡 = 𝑟𝑡 × (1 − 𝛼𝑑𝑡) + 𝜎(𝑡, 𝑟𝑡) × 𝑑𝑊𝑡 + 𝜗(𝑡)𝑑𝑡 

B.1 Distribution mean 

Suppose that 𝜇𝑡 = 𝐸𝑟𝑡. Then the differential equation for the 𝜇𝑡 function is described by the following 

formula. 

𝜇𝑡+𝑑𝑡 = 𝜇𝑡 × (1 − 𝛼𝑑𝑡) + 𝜗(𝑡)𝑑𝑡 

or equivalently 

𝜇′ + 𝛼𝜇 = 𝜗(𝑡) 

B.1.1 Stepwise-constant drift 

Suppose that 𝜇 = 𝑒−𝛼𝑡 × 𝜂. Then 𝑒−𝛼𝑡 × 𝜂′ = 𝜗(𝑡) or 𝜂 = 𝑟 + ∫ 𝑒𝛼𝑠
𝑡

0
𝜗(𝑠)𝑑𝑠. Therefore, we get the following 

formula in general case. 

(B.1)  𝜇 = 𝑒−𝛼𝑡 × [𝑟 + ∫ 𝑒𝛼𝑠
𝑡

0

𝜗(𝑠)𝑑𝑠] 

For a stepwise constant ϑ(𝑢) function, equation (B.1) can be represented as follows28 

(B.2)  𝜇 = 𝑒−𝛼𝑡 × [𝑟 +
1

𝛼
× ∑ (𝑒𝑎𝑡𝑖+1 − 𝑒𝑎𝑡𝑖) × 𝜗𝑖
𝑖:𝑡𝑖<𝑡

] 

 

B.1.2 Stepwise-constant drift and zero mean-reversion 

If 𝛼 → 0  then the general equation (B.2) is simplified to the following equation 

                                                      
28 ∫ 𝑒𝛼𝑠𝑑𝑠

𝑡𝑖+1

𝑡𝑖
=

1

𝛼
× (𝑒𝑎𝑡𝑖+1 − 𝑒𝑎𝑡𝑖) 
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(B.3)  𝜇 = 𝑟 + ∫ 𝜗(𝑠)𝑑𝑠
𝑡

0

= 𝑟 + ∑ (𝑡𝑖+1 − 𝑡𝑖) × 𝜗𝑖
𝑖:𝑡𝑖<𝑡

 

 

B.1.3 Constant drift 

For the constant 𝜗(𝑡) = 𝜗 parameter equation (B.2) is reduced to the following formula 

(B.4)  𝜇 =
𝜗

𝛼
+ 𝑒−𝛼𝑡 × (𝑟 −

𝜗

𝛼
) 

Note that 
𝜗

𝛼
 is the long-term equilibrium of the interest rates. 

B.1.4 Constant drift and zero mean-reversion 

For the constant 𝜗(𝑡) = 𝜗 parameter and 𝛼 → 0 equation (B.4) is reduced to the following formula 

(B.5)  𝜇 = 𝑟 + 𝜗𝑡 

Note that the equations derived for the interest rate distribution mean parameter apply to both Vasicek 

(Hull-White extended Vasicek) and to CIR (Hull-White extended CIR) interest rate models. 

B.2 Distribution variance 

The equation for the interest rate variance is derived separately for the Vasicek and CIR models. 

B.2.1 Vasicek and Hull-White (extended Vasicek) 

In the case of Hull-White (extended Vasicek) model, the variance of the interest rates is derived based on 

the following equation. 

𝑟𝑡+𝑑𝑡 = 𝑟𝑡 × (1 − 𝛼𝑑𝑡) + 𝜎 × 𝑑𝑊𝑡 + 𝜗(𝑡)𝑑𝑡 

Suppose that 𝜈𝑡 denotes the variance of the interest rates. Then the variance 𝜈𝑡 is described by the following 

equation 

𝜈𝑡+𝑑𝑡 = 𝜈𝑡 × (1 − 𝛼𝑑𝑡)
2 + 𝜎2𝑑𝑡 

The equation can be represented equivalently as follows 

𝜈𝑡
′ + 2𝛼𝜈𝑡 = 𝜎

2 

If we look for the solution in the form 𝜈𝑡 = 𝑒−2𝛼𝑡 × 𝜐𝑡, then 𝑒−2𝛼𝑡 × 𝜐𝑡
′ = 𝜎2 or 𝜐𝑡 =

𝜎2

2𝛼
× (𝑒2𝛼𝑡 − 1). The 

equation for 𝜈𝑡 then becomes 
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(B.6)  𝜈𝑡 =
𝜎2

2𝛼
× (1 − 𝑒−2𝛼𝑡) 

As 𝜶 → 𝟎, equation (B.6) becomes 

(B.7)  𝜈𝑡 = 𝜎
2 × 𝑡 

 

B.2.2 Hull-White (extended CIR) 

In the case of Hull-White (extended Vasicek) model, the variance of the interest rates is derived based on 

the following equation. 

𝑟𝑡+𝑑𝑡 = 𝑟𝑡 × (1 − 𝛼𝑑𝑡) + 𝜎√𝑟𝑡 × 𝑑𝑊𝑡 + 𝜗(𝑡)𝑑𝑡 

Suppose that 𝜈𝑡 denotes the variance of the interest rates. Then the variance 𝜈𝑡 is described by the following 

equation. 

𝜈𝑡+𝑑𝑡 = 𝐸[𝑟𝑡 × (1 − 𝛼𝑑𝑡) + 𝜎√𝑟𝑡 × 𝑑𝑊𝑡]
2
− (𝐸[𝑟𝑡 × (1 − 𝛼𝑑𝑡) + 𝜎√𝑟𝑡 × 𝑑𝑊𝑡])

2
 

or equivalently 

𝜈𝑡+𝑑𝑡 = 𝐸[𝑟𝑡 × (1 − 𝛼𝑑𝑡)]
2 + 𝜎2 × 𝜇𝑡 × 𝑑𝑡 − (𝐸[𝑟𝑡 × (1 − 𝛼𝑑𝑡)])

2 = 𝜈𝑡 × (1 − 𝛼𝑑𝑡)
2 + 𝜎2 × 𝜇𝑡 × 𝑑𝑡 

The above formula can be represented as the following differential equation 

𝜈𝑡
′ + 2𝛼𝜈𝑡 = 𝜎2 × 𝜇𝑡 

where 𝜇𝑡 = 𝑒
−𝛼𝑡 × [𝑟 + ∫ 𝑒𝛼𝑠

𝑡

0
𝜗(𝑠)𝑑𝑠] was derived in equation (B.1). 

The generic solution of the differential equation is described by the following formula29 

(B.8)  𝜈𝑡 =
𝜎2 × 𝑒−2𝛼𝑡

𝛼
× [𝑟 × (𝑒𝛼𝑡 − 1) + ∫ 𝑒𝑎𝑢 × (𝑒𝑎𝑡 − 𝑒𝑎𝑢) × 𝜗𝑢𝑑𝑢

𝑡

0

] 

For a stepwise constant ϑ(𝑢) function, equation (B.8) can be represented as follows.30 

                                                      

29 𝜈𝑡 = 𝜎2 × 𝑒−2𝛼𝑡 × ∫ 𝑒2𝛼𝑠𝜇𝑠𝑑𝑠
𝑡

0
= 𝜎2 × 𝑒−2𝛼𝑡 × ∫ 𝑒𝛼𝑠 × [𝑟 + ∫ 𝑒𝑎𝑢𝜗𝑢𝑑𝑢

𝑠

0
]𝑑𝑠

𝑡

0
= 𝜎2 × 𝑒−2𝛼𝑡 × [𝑟 × ∫ 𝑒𝛼𝑠 + ∫ 𝑒𝑎𝑢𝜗𝑢 × (∫ 𝑒𝛼𝑠𝑑𝑠

𝑡

𝑢
) × 𝑑𝑢

𝑡

0

𝑡

0
] =

𝜎2×𝑒−2𝛼𝑡

𝛼
× [𝑟 × (𝑒𝛼𝑡 − 1) + ∫ 𝑒𝑎𝑢 × (𝑒𝑎𝑡 − 𝑒𝑎𝑢) × 𝜗𝑢

𝑡

0
] 

30 ∫ 𝑒𝑎𝑢(𝑒𝑎𝑡 − 𝑒𝑎𝑢) × 𝑑𝑢 =
1

𝛼
× [𝑒𝑎𝑡 × (𝑒𝑎𝑡𝑖+1 − 𝑒𝑎𝑡𝑖) −

1

2
× (𝑒2𝑎𝑡𝑖+1 − 𝑒2𝑎𝑡𝑖)]

𝑡𝑖+1

𝑡𝑖
=

1

𝛼
× (𝑒𝑎𝑡𝑖+1 − 𝑒𝑎𝑡𝑖) × (𝑒𝑎𝑡 −

𝑒𝑎𝑡𝑖+1+𝑒𝑎𝑡𝑖

2
) 
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(B.9)  𝜈𝑡 =
𝜎2 × 𝑒−2𝛼𝑡

𝛼
× [𝑟 × (𝑒𝛼𝑡 − 1) +

1

𝛼
× ∑ (𝑒𝑎𝑡𝑖+1 − 𝑒𝑎𝑡𝑖) × (𝑒𝑎𝑡 −

𝑒𝑎𝑡𝑖+1 + 𝑒𝑎𝑡𝑖

2
) × 𝜗𝑖

𝑖:𝑡𝑖<𝑡

] 

As 𝜶 → 𝟎, equation (B.8) becomes 

(B.10)  𝜈𝑡 = 𝜎2 × [𝑟𝑡 + ∫ (𝑡 − 𝑢) × ϑ(𝑢)𝑑𝑢
𝑡

0

] 

For a stepwise constant ϑ(𝑢) function, equation (B.10) can be represented as follows31 

(B.11)  𝜈𝑡 = 𝜎
2 × [𝑟𝑡 + ∑ (𝑡𝑖+1 − 𝑡𝑖) × (𝑡 −

𝑡𝑖+1 + 𝑡𝑖
2

) × 𝜗𝑖
𝑖:𝑡𝑖<𝑡

] 

 

B.2.3 CIR 

If parameter 𝜗(𝑡) = 𝜗 is constant, the equation (B.8) can be simplified as follows. 

(B.12)  𝜈𝑡 = 𝜎
2 × [

𝑟

𝛼
× 𝑒−𝛼𝑡 × (1 − 𝑒−𝛼𝑡) +

𝜗

𝛼2
× (

1

2
− 𝑒−𝛼𝑡 +

1

2
𝑒−2𝛼𝑡)] 

As 𝜶 → 𝟎, equation (B.12) becomes 

(B.13)  𝜈𝑡 = 𝜎2 × [𝑟𝑡 + 𝜗 ×
𝑡2

2
] 

 

B.3 Transition probabilities 

In this section we consider two alternative approaches to adjusting transition probabilities. Under the first 

(default) approach, matching with the theoretical mean and standard deviation parameters of the interest 

rate process is performed by applying a contraction mapping to the mean and standard deviation 

parameters. The approach is described in Appendix B.3.1.  

In an alternative approach, transition probability adjustment is performed by making a minimum adjustment 

to the pre-adjusted probabilities so that the mean and standard deviation of the adjusted probabilities match 

the theoretical mean and standard deviation parameters. A potential problem with the approach is that 

some of the adjusted transition probabilities may be negative. If we impose a restriction that the adjusted 

probabilities are non-negative numbers, then implementation of the approach may become more time 

intensive and inefficient compared to the first approach. The approach is described in Appendix B.3.2. 

                                                      

31 ∫ (𝑡 − 𝑢)𝑑𝑢
𝑡𝑖+1

𝑡𝑖
= −

(𝑡−𝑢)2

2
|𝑡𝑖
𝑡𝑖+1 =

(𝑡−𝑡𝑖)
2

2
−

(𝑡−𝑡𝑖+1)
2

2
=

2×𝑡×(𝑡𝑖+1−𝑡𝑖)−(𝑡𝑖+1
2 −𝑡𝑖

2)

2
= (𝑡𝑖+1 − 𝑡𝑖) × (𝑡 −

𝑡𝑖+1+𝑡𝑖

2
) 
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B.3.1 Adjustment estimation based on contraction mapping 

Suppose that 𝜇 and 𝜎 are the parameters of the transition probabilities that we need to match in state 𝑟𝑡,𝑖 

and that �̂�(𝜇𝑗, 𝜎𝑗) and �̂�(𝜇𝑗, 𝜎𝑗) are the mean and standard deviation parameters of transition probabilities 

estimated numerically in state 𝑟𝑡,𝑖 based on the discrete approximation of the process set of states. Then 

the contraction mapping is defined as follows.  

{
𝜇𝑗+1 = 𝜇𝑗 + 𝜆𝜇 × [𝜇 − �̂�(𝜇𝑗, 𝜎𝑗)]

𝜎𝑗+1 = 𝜎𝑗 + 𝜆𝜎 × [𝜎 − �̂�(𝜇𝑗, 𝜎𝑗)]
 

for some parameters 𝜆𝜇 ≤ 1 amd 𝜆𝜎 ≤ 1. If the above mapping is a contraction mapping [Note: need to 

prove it] then the sequence of parameters (𝜇𝑗 , 𝜎𝑗) converges to a solution 

{
𝜇𝑗+1 = 𝜇𝑗
𝜎𝑗+1 = 𝜎𝑗

 

or equivalently 

{
�̂�(𝜇𝑗, 𝜎𝑗) = 𝜇

�̂�(𝜇𝑗, 𝜎𝑗) = 𝜎
 

The algorithm can be summarized as follows. 

► Start with the theoretical values 𝜇0 = 𝜇 and 𝜎0 = 𝜎;  

► At each iteration 𝑗, estimate the transition distribution probabilities assuming Normal distribution 

with parameters (𝜇𝑗, 𝜎𝑗); 

► Estimate numeric mean and standard deviation parameters (𝜇𝑗+1, 𝜎𝑗+1) based on the discrete 

distribution estimated at the previous step; 

► If the numeric mean �̂�(𝜇𝑗 , 𝜎𝑗) (standard deviation �̂�(𝜇𝑗 , 𝜎𝑗)) is below (above) the theoretical value 

at iteration 𝑗, then we respectively increase (decrease) the mean (standard deviation) parameter; 

► Continue the iterations until the numerical value converges to the theoretical value sufficiently close. 

► Parameters 𝜆𝜇 and 𝜆𝜎 are selected to ensure that the mapping is a contraction mapping and to 

maximize the speed of convergence to the theoretical mean and standard deviation values. 

 

B.3.2 Adjustment estimation based on minimum deviation from pre-adjusted normal 
probabilities 

As discussed in Section 4.2, the transition probabilities are estimated by solving the following optimization 

problem. In the notation below we assume that period 𝑡 and process state 𝑟𝑡,𝑖 are fixed and that the transition 

probabilities in the state 𝑟𝑡,𝑖 are estimated (we omit the indices 𝑡 and 𝑖 in the equation below). 

min
1

2
∑𝑞𝑗

−𝜌
× (�̃�𝑗 − 𝑞𝑗)

2

𝑗

 

under the following constraints: 
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{
 
 
 

 
 
 ∑�̃�𝑗 = 1

𝑗

∑�̃�𝑗 × (𝑟𝑡+𝑑𝑡,𝑗 − 𝑟𝑡,𝑖) = 𝜇(𝑡, 𝑟𝑡,𝑖) × 𝑑𝑡 = 𝑚

𝑗

∑�̃�𝑗 × (𝑟𝑡+𝑑𝑡,𝑗 − 𝑟𝑡,𝑖)
2
= 𝜎2(𝑡, 𝑟𝑡) × 𝑑𝑡 + [𝜇(𝑡, 𝑟𝑡) × 𝑑𝑡]

2 = 𝑠2
𝑗

 

Note that because the set of constraints consist of three equations, the number of branches in the modelling 

tree must be at least three to ensure that the system of constraints has a solution. It is generally not possible 

to match the drift and volatility parameters of an interest rate process using binary trees to approximate the 

Brownian motion. 

Lagrangian of the optimization model is described by the following equation 

ℒ = −
1

2
∑(�̃�𝑗 − 𝑞𝑗)

2

𝑗

+ 𝜆1 × [1 −∑�̃�𝑗
𝑗

] + 𝜆2 × [𝑚 −∑�̃�𝑗 × (𝑟𝑡+𝑑𝑡,𝑗 − 𝑟𝑡,𝑖)

𝑗

] + 𝜆3 × [𝑠2 −∑�̃�𝑗 × (𝑟𝑡+𝑑𝑡,𝑗 − 𝑟𝑡,𝑖)
2

𝑗

] 

In the matrix notation, the Lagrangian can be represented as follows. 

ℒ = −
1

2
(�̃� − 𝑞)𝑇 × 𝐷× (�̃� − 𝑞)− �̃�𝑇 ×𝑋× 𝜆 + (𝜆1 + 𝜆2 ×𝑚 + 𝜆3𝑠2) 

where 

𝐷 = (
𝑞1
−𝜌

0 0

0 ⋯ 0
0 0 𝑞𝑛

−𝜌
) and 𝑋 = (

1 𝑟𝑡+𝑑𝑡,1 − 𝑟𝑡,𝑖 (𝑟𝑡+𝑑𝑡,1 − 𝑟𝑡,𝑖)
2

⋯ ⋯ ⋯

1 𝑟𝑡+𝑑𝑡,𝑛 − 𝑟𝑡,𝑖 (𝑟𝑡+𝑑𝑡,𝑛 − 𝑟𝑡,𝑖)
2
) 

The first-order conditions for the optimization problem are described by the following equations: 

{
𝐷 × (�̃� − 𝑞) = 𝑋 × 𝜆

𝑋𝑇 × �̃� = 𝑐
 

where 𝑐 = (1,𝑚, 𝑠2). The system of equations has the following solution 

{
𝜆 = (𝑋𝑇𝐷−1𝑋)−1 × (𝑐 − 𝑋𝑇𝑞)

�̃� = 𝑞 + 𝐷−1 × 𝑋 × 𝜆
 

The above equation does not guarantee that estimated adjusted probabilities �̃� are positive. The negative 

values of �̃� are replaced with zeros and the probabilities are normalized. As a result, there may be some 

deviation of the mean and standard deviation parameters from the theoretical values. Examples are 

illustrated in the Appendix G.2. 
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Appendix C Alternative Parameter Estimation Methods 
  

  

Section 3 describes the default approach to the option model parameters estimation (which is implemented 

in the ac.finance.SRM tool. This section summarizes other alternative parameter estimation methods. 

C.1 Volatility parameter 

Alternative methods for volatility parameter estimation are summarized below. 

C.1.1 Sample variance based on daily data 

The sample volatility is derived for Vasicek and CIR models. Volatility is estimated for the daily frequency 

and then is converted into the annual volatility using the following equation:32 

(C.1)  �̂� = √250 × 𝜎𝑛 

where 𝑢𝑡 is the error term of the interest rate process. The equation for the error term 𝑢𝑡 is derived 

separately for each type of the interest rate process. The key downside of the approach is the sensitivity of 

the volatility estimator to the sample outliers (which impact is amplified by the 
1

√𝑑𝑡
 factor). 

C.1.1.1 Vasicek model 

Sample volatility is estimated based on the following short rate representation. 

𝑑𝑟𝑡 = (𝜗𝑡 − 𝑎𝑟𝑡) × 𝑑𝑡 + 𝜎 × 𝑑𝑊𝑡 

so that the residuals are estimated as follows 

(C.2)  𝑢𝑡 =
𝑑𝑟𝑡

√𝑑𝑡
 

In practical applications, 𝑑𝑡 is assumed constant and is calculated based on the number of business days 

during the year: 𝑑𝑡 =
1

250
. Equation Error! Reference source not found. represents a daily sample of 

residuals, which can be used to estimate the volatility parameter. A potential problem with the daily sample 

is that outlier data can have a material impact on the volatility estimation. 

C.1.1.2 CIR and Hull-White (extended CIR) 

Sample volatility is estimated based on the following short rate representation. 

𝑑𝑟𝑡 = (𝜗𝑡 − 𝑎𝑟𝑡) × 𝑑𝑡 + 𝜎 × √𝑟𝑡 × 𝑑𝑊𝑡 

so that �̂� is estimated as a sample standard deviation of the {
𝑑𝑟𝑡

√𝑟𝑡×𝑑𝑡
} sample: 

                                                      

32 The equation assumes that the yield series has daily frequency. If the frequency of the yield series is different, the equation must 
be adjusted accordingly.  
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(C.3)  𝑢𝑡 =
𝑑𝑟𝑡

√𝑟𝑡 × 𝑑𝑡
 

In practical applications, 𝑑𝑡 is assumed constant and is calculated based on the number of business days 

during the year: 𝑑𝑡 =
1

250
. 

C.1.2 EWMA / GARCH(1, 1) variance estimate 

Under the GARCH(1, 1) approach, the volatility is modelled as follows: 

(C.4)  {
𝑢𝑛 = 𝜎𝑛𝜀𝑛
𝜎𝑛
2 = 𝛾𝑉𝐿 + 𝛼𝑢𝑛−1

2 + 𝛽𝜎𝑛−1
2  

where 

(C.5)  𝛾 + 𝛼 + 𝛽 = 1 

The volatility in each specific period is conditional on the previous period volatility and this period change 

in the interest rates. Term 𝑉𝐿 represents long-term volatility. This is a latent variable which is calculated as 

part of the GARCH(1, 1) model estimation process.  

The model is estimated as a regression  equation using maximum likelihood methods. 

(C.6)  {
𝑢𝑛 = 𝜎𝑛𝜀𝑛
𝜎𝑛
2 = 𝜔 + 𝛼𝑢𝑛−1

2 + 𝛽𝜎𝑛−1
2  

Parameters 𝛾 and 𝑉𝐿 are estimated then as follows 

(C.7)  𝛾 = 1 − 𝛼 − 𝛽 and 𝑉𝐿 =
𝜔

𝛾
 

If the intercept parameter 𝜔 is estimated as negative, then it is set to zero and the GARCH(1, 1) model 

becomes EWMA model described by the following equation 

(C.8)  {
𝑢𝑛 = 𝜎𝑛𝜀𝑛
𝜎𝑛
2 = 𝛼𝜀𝑛−1

2 + (1 − 𝛼)𝜎𝑛−1
2  

Parameter 𝛼 in JPMorgan RiskMetrics33 tool is set to 

(C.9)  𝛼 = 0.06 and 1 − 𝛼 = 0.94 

based on the statistical analysis performed by JPMorgan (see [1] pages 198 – 205). 

                                                      

33 https://en.wikipedia.org/wiki/RiskMetrics.  

https://en.wikipedia.org/wiki/RiskMetrics
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C.1.3 Volatility based on Bloomberg’s SWPM tool 

Bloomberg Swap Manager (SWPM) tool estimates implied volatility of a base rate (including volatility of 

Libor rates) as part of interest rate cap calculations. The screen with the output of interest rate cap 

calculations is provided in the exhibit below. 

 

The exhibit above shows that, as part of the interest rate cap valuation, SWPM estimated implied Libor 

volatility at 0.57%. 

C.1.4 CBOE interest rate volatility index 

Alternatively, volatility parameter can be estimated using CBOE SRVIX interest rate volatility index34 

reported by Bloomberg and illustrated in the exhibit below. The description of the SRVIX index estimation 

methodology is described in the white paper released by CBOE. 35 According to the white paper, the 

volatility index is estimated based on the Black (1976) formula for the underlying bond prices.36 

                                                      

34 SRVIX index overview: http://www.cboe.com/index/dashboard/srvix#srvix-overview.  

35 SRVIX index white paper: https://www.cboe.com/micro/srvix/srvix.pdf.  

36 https://en.wikipedia.org/wiki/Black_model.  

http://www.cboe.com/index/dashboard/srvix#srvix-overview
https://www.cboe.com/micro/srvix/srvix.pdf
https://en.wikipedia.org/wiki/Black_model
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Exhibit 5.3 Interest rate volatility index SRVIX 

 

 

C.2 Drift parameter 

The section describes the equations for the drift parameter estimation in Hull-White (extended Vasicek) and 

Hull-White (extended CIR) models. 

C.2.1 Hull-White (extended Vasicek) model 

The term structure for the Hull-White (extended Vasicek) is described by the following equations37 

𝑇𝑅𝑇 = 𝐵(0, 𝑇) × 𝑟0 +∫ 𝜗(𝑠) × 𝐵(𝑠, 𝑇) × 𝑑𝑠 −
𝜎2

2𝛼2
× (𝑇 − 𝐵(0, 𝑇)) +

𝜎2𝐵(0, 𝑇)2

4𝛼

𝑇

0

 

which, in case 𝛼 = 0 becomes 

𝑇𝑅𝑇 = 𝑇 × 𝑟0 +∫ 𝜗(𝑠) × (𝑇 − 𝑠) × 𝑑𝑠
𝑇

0

−
𝜎2

6
× 𝑇3 

Suppose that  

𝐺(𝑇) = ∫ 𝜗(𝑠) × 𝐵(𝑠, 𝑇) × 𝑑𝑠
𝑇

0

= 𝑇𝑅𝑇 − 𝐵(0, 𝑇) × 𝑟0 +
𝜎2

2𝛼2
× (𝑇 − 𝐵(0, 𝑇)) −

𝜎2𝐵(0, 𝑇)2

4𝛼
 

which, in case 𝛼 = 0 becomes 

𝐺(𝑇) = ∫ 𝜗(𝑠) × (𝑇 − 𝑠) × 𝑑𝑠
𝑇

0

= 𝑇𝑅𝑇 − 𝑇 × 𝑟0 +
𝜎2

6
× 𝑇3 

Suppose that 𝑡0 = 0, 𝑡1, … , 𝑡𝑛−1, 𝑡𝑛 = 𝑇 are discrete periods with observed market yield rates 𝑅𝑖 and respective values 

of the function 𝐺(𝑇) equal to 𝐺𝑖. Function 𝜗(𝑠) is assumed to be constant and equal to 𝜗𝑖+1 on the interval 𝑡 ∈

                                                      

37 A reminder that 𝐵(𝑠, 𝑡) =
1−𝑒−𝛼(𝑇−𝑠)

𝛼
→ 𝑇 − 𝑠 as 𝛼 → 0  
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[𝑡𝑖 , 𝑡𝑖+1]. If we denote 𝛽𝑖+1,𝑛 = ∫ 𝐵(𝑠, 𝑇) × 𝑑𝑠
𝑡𝑖+1

𝑡𝑖
, then the unknown parameters 𝜗𝑖 are estimated recursively as 

described in the equation below. 

(C.10)  

{
 
 

 
 𝜗1 =

𝐺1

𝛽
1,1

, 𝑖𝑓 𝑛 = 1

𝜗𝑛 =
𝐺𝑛 − ∑ 𝜗𝑖 × 𝛽𝑖,𝑛

𝑛−1
𝑖=1

𝛽
𝑛,𝑛

𝑖𝑓 𝑛 > 1

 

where  

𝛽𝑖+1,𝑛 =
(𝑡𝑖+1 − 𝑡𝑖) − (𝐵(𝑇 − 𝑡𝑖) − 𝐵(𝑇 − 𝑡𝑖+1))

𝛼
 

If 𝛼 → 0, then the equation for 𝛽𝑖+1,𝑛 is described as follows. 

𝛽𝑖+1,𝑛 = (𝑡𝑖+1 − 𝑡𝑖) × (𝑇 − 𝑡𝑖
𝑎𝑣) 

where 𝑡𝑖
𝑎𝑣 =

𝑡𝑖+1+𝑡𝑖

2
. 

In the case of the Hull-White model, the discrete term structure of the interest rates is assumed to be 

generated by a piecewise-constant structure of drift parameters: 𝑡𝑖 → 𝜗𝑖+1 (using equation (vsk.3b)), which 

is then converted to a function defined as  

𝜗(𝑡) = 𝜗𝑖+1     𝑓𝑜𝑟   𝜗 ∈ [𝑡𝑖, 𝑡𝑖+1) 

 

C.2.2 Hull-White (extended CIR) model 

As before, suppose that 𝑡0 = 0, 𝑡1, … , 𝑡𝑛−1, 𝑡𝑛 = 𝑇 are discrete periods with observed market yield rates 𝑅𝑖 and 

respective values of the function 𝐺(𝑇) equal to 𝐺𝑖. If we denote 𝛽𝑖+1,𝑛 = ∫ 𝐵(𝑠, 𝑇) × 𝑑𝑠
𝑡𝑖+1

𝑡𝑖
, then the unknown 

parameters 𝜗𝑖 are estimated recursively as described in the equation below. 

(C.11)  

{
 
 

 
 𝜗1 =

𝐺1

𝛽
1,1

, 𝑖𝑓 𝑛 = 1

𝜗𝑛 =
𝐺𝑛 − ∑ 𝜗𝑖 × 𝛽𝑖,𝑛

𝑛−1
𝑖=1

𝛽
𝑛,𝑛

𝑖𝑓 𝑛 > 1

 

where38 

𝛽𝑖+1,𝑛 = ∫ 𝐵(𝑠, 𝑇) × 𝑑𝑠
𝑡𝑖+1

𝑡𝑖

=
−2

𝛾 − 𝛼
× [𝑡𝑖+1 − 𝑡𝑖] +

4

𝛾2 − 𝛼2
× (ln[(𝛾 + 𝛼) × 𝑒𝛾(𝑇−𝑡𝑖) + (𝛾 − 𝛼)] − ln[(𝛾 + 𝛼) × 𝑒𝛾(𝑇−𝑡𝑖+1) + (𝛾 − 𝛼)]) 

                                                      

38 ∫ 𝐵(𝑠, 𝑇) × 𝑑𝑠
𝑡𝑖+1

𝑡𝑖
= ∫

2×(𝑒𝛾(𝑇−𝑠)−1)

(𝛾+𝛼)×(𝑒𝛾(𝑇−𝑠)−1)+2𝛾
× 𝑑𝑠

𝑡𝑖+1

𝑡𝑖
= ∫

2×𝑒𝛾(𝑇−𝑠)−2

(𝛾+𝛼)×𝑒𝛾(𝑇−𝑠)+(𝛾−𝛼)
× 𝑑𝑠

𝑡𝑖+1

𝑡𝑖
=

−2

𝛾−𝛼
∫

[(𝛾+𝛼)×𝑒𝛾(𝑇−𝑠)+(𝛾−𝛼)]−𝑒𝛾(𝑇−𝑠)×((𝛾−𝛼)+(𝛾+𝛼))

(𝛾+𝛼)×𝑒𝛾(𝑇−𝑠)+(𝛾−𝛼)
×

𝑡𝑖+1

𝑡𝑖

𝑑𝑠 =
−2

𝛾−𝛼
× [𝑡𝑖+1 − 𝑡𝑖] −

2

𝛾−𝛼
× 2 × ∫

𝑑𝑒𝛾(𝑇−𝑠)

(𝛾+𝛼)×𝑒𝛾(𝑇−𝑠)+(𝛾−𝛼)
=

𝑡𝑖+1

𝑡𝑖

−2

𝛾−𝛼
× [𝑡𝑖+1 − 𝑡𝑖] −

4

(𝛾+𝛼)(𝛾−𝛼)
× ln[(𝛾 + 𝛼) × 𝑒𝛾(𝑇−𝑠) + (𝛾 − 𝛼)]  |

𝑡𝑖

𝑡𝑖+1 =
−2

𝛾−𝛼
×

[𝑡𝑖+1 − 𝑡𝑖] +
4

𝛾2−𝛼2
× (ln[(𝛾 + 𝛼) × 𝑒𝛾(𝑇−𝑡𝑖) + (𝛾 − 𝛼)] − ln[(𝛾 + 𝛼) × 𝑒𝛾(𝑇−𝑡𝑖+1) + (𝛾 − 𝛼)]) 
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If the mean-reversion parameter is zero, 𝛼 = 0, then the above equation is simplified to the following 

equation. 

𝛽𝑖+1,𝑛 =
−2

𝛾
× [𝑡𝑖+1 − 𝑡𝑖] +

4

𝛾2
× (ln[𝑒𝛾(𝑇−𝑡𝑖) + 1] − ln[𝑒𝛾(𝑇−𝑡𝑖+1) + 1]) 

 

C.3 Mean-reversion parameter 

Alternative methods for mean-reversion parameter estimation are summarized below. 

C.3.1 Mean-reversion parameter implied by term structure 

The implied mean-reversion parameter is estimated based on the yield term structure.  

C.3.1.1 Vasicek - unconstrained 

After substituting 𝑃𝑇 = [𝑒
(𝐵−𝑇)×(𝑎2𝛽−𝜎2/2)

𝛼2
−
𝜎2𝐵2

4𝛼 ] × 𝑒−𝐵𝑟0, we get −ln𝑃𝑇 =
𝜎2𝐵2

4𝛼
−

(𝐵−𝑇)×(𝑎2𝛽−
𝜎2

2
)

𝛼2
+ 𝐵𝑟0 or 

𝑇𝑅𝑇 − 𝐵𝑟0 =
𝜎2𝐵2

4𝛼
−
(𝐵 − 𝑇) × (𝛼𝜃 −

𝜎2

2
)

𝛼2
 

The equation can be rewritten as  

𝑇𝑅𝑇 − 𝐵𝑟0 = −𝛽 × (𝐵 − 𝑇) + 𝜎
2 × [

𝐵2

4𝛼
+
𝐵 − 𝑇

2𝛼2
] 

The parameters are estimated as follows. For a given value of 𝛼, the function 𝐵 =
1−𝑒−𝛼𝑇

𝛼
 is estimated and 

the above linear model is estimated. The coefficients 𝜎2 and 𝛽 are estimated from the linear model and 

parameter 𝛼 is selected to minimize the overall sum of squares in the linear regression. The estimation 

procedure is reduced to the optimization problem for a non-linear function of 𝛼 variable. 

C.3.1.2 Vasicek - constrained 

In the constrained version of the model, 𝛽 = 𝑟0 so that the steady state is equal to the current yield rate. 

The equation then becomes: 

𝑇𝑅𝑇 − 𝑇𝑟0 = 𝜎2 × [
𝐵2

4𝛼
+
𝐵 − 𝑇

2𝛼2
] 

or, formally,  

𝐵(𝑡) = 𝑡,   𝐴1 = 0,   𝑎𝑛𝑑  𝐴2 =
�̃�2

4𝛼
+
�̃� − 𝑇

2𝛼2
  

Where �̃� =
1−𝑒−𝛼𝑇

𝛼
. The price in the case of constrained model is calculated as follows 

𝑃𝑇 = 𝑒
−𝜎2[

�̃�2

4𝛼
+
�̃�−𝑇
2𝛼2

]
× 𝑒−𝑇𝑟0 
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Appendix D Bond Repayment Terms and Option Penalty 
Structure 

  

  

xx 

D.1 Call option 

A typical penalty structure of a callable bond can be summarized as follows: 

► Make-whole provision. The callable bond has a make-whole provision, which is effective until 

certain make-whole provision termination date. Prior to a make-whole termination date, a cost of 

exercising a call option is assumed to be very high and effectively the note is assumed to be non-

callable because a size of a make-whole penalty makes it very expensive for a borrower to prepay 

early. 

► Redemption penalty. On a make-whole termination date, a prepayment penalty is set as a fixed 

percentage of a note principal amount. This penalty rate varied for different callable bonds. 

► Redemption penalty structure. A penalty fixed percentage is reduced over time. A penalty 

reduction is approximately linear over time: after every fixed period of time, a penalty is reduced by 

a fixed amount until a penalty becomes zero on a callable bond maturity date. 

This penalty structure can be presented schematically using the following diagram: 

Exhibit D.1 Callable bond prepayment penalty structure 

 

In the example above, the post-make-whole-termination penalty is assumed to be 6% on the make-whole 

termination date. The penalty rate is reduced to 4% and then to 2% before the bond matures. The penalty 

structure is presented by the respective stepwise penalty function. The stepwise function can be 

approximated reasonably accurately with the linear function (presented in the diagram by the red dashed 

line) which decreases from 6% on the make-whole termination date to 0% on the maturity date. 

Bloomberg print screen with a typical callable bond redemption penalty schedule is presented in the exhibit 

below. 
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Exhibit D.2 A standard penalty structure of a callable bond 

 

 

In the example, the callable bond was issued in March 2015, has a make-whole provision which terminates 

in March 2020 and has a redemption penalty of 2.875% applicable in March 2020 which is reduced annually 

to zero in March 2023 (two years prior to the bond maturity). 

D.2 Put option 

A putable bond can typically be exercised only at certain discrete set of dates. Bloomberg print screen with 

a typical putable bond redemption penalty schedule is presented in the exhibit below. 
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Exhibit D.3 Standard pay-on-demand terms of a putable bond 

 

 

In the example, the put option can be exercised on an annual basis on a specific date (February 15) starting 

after approximately three years and 2.5 months after the bond issue date. In many examples of putable 

bonds pay-on-demand terms the put option can be exercised only once during the life of the bond. Putable 

bonds typically do not have redemption discounts. The main restriction on the pay-on-demand terms is the 

timing of exercising the option.  

 



 

Konstantin Rybakov                                             Interest Rate Options                                           Page 57 of 89  

Appendix E John Hull DerivaGem Tool 
  

  

In this section we describe the Hull-White DerivaGem tool, which is traditionally used to valuate the interest 

rate options. Our tool effectively replicates the numbers produced by the DerivaGem tool.39  

E.1 Description of DerivaGem tool 

The following parameters are set to estimate the call / put option price (the parameters are illustrated for 

the case of Vasicek model with zero mean-reversion parameter): 

1. Principal amount (value of the call option is calculated relative to the principal amount. Therefore, 

if the principal amount is set equal to 100, then the call option is calculated as a percentage of the 

principal amount); 

2. Maturity term of the bond (in years); 

3. Coupon rate is set equal to the bond coupon rate; 

4. Strike price (redemption price of the bond). The strike price is set equal to the principal amount if 

there is no penalty for the option prepayment. DerivaGem tool can model only constant penalty 

over time. If penalty is 𝑥%, then the strike price is set at 𝐾 = 100 × (1 + 𝑥%); 

5. Option life (in years). Option life typically equals to the maturity term of the bond minus notice period 

of the option minus one day; 

6. Short-rate volatility of the market yields. The market yield rates are used to estimate the short-rate 

discount factors used in bond valuation. The volatility is estimated based on historical behavior of 

the short-rate (3-months) yield series. The credit risk of the yield series is selected to match the 

credit rating of the reference bond to take into account the credit risk exposure in the option 

transaction (if the bond defaults, then the payouts in the options are set to zero). Alternatively, the 

volatility can be estimated using treasury rates (assuming that valuation is performed using treasury 

rates) but the default state of the bond and the varying probability of default must be modeled 

explicitly. For Hull-White (extended Vasicek) model volatility is estimated as �̂� = √250 ×
𝑠𝑡𝑑𝑒𝑣 [𝑑𝑟𝑡]; 

7. Mean-reversion rate. The default mean-reversion rate was assumed to be equal to zero; 

8. Tree steps. Generally, is set to four times the maturity term. Factor four corresponds to a 3-month 

length of each discrete time period in the interest rate tree; 

9. Term structure.  Each model of the short-rate (Hull-White extended Vasicek or extended CIR) 

produces a term-structure specific to the model. For example, the term structure for the Hull-White 

extended Vasicek model, assuming zero mean-reversion rate, is equal to 𝑅𝑇 = 𝑟0 +
1

2
𝜗𝑇 −

1

6
𝜎2𝑇2. 

The term structure must be set in the corresponding cells. To estimate the term structure, the drift 

parameter 𝜗 and the initial value r_0 must be set. The drift parameter ϑ effectively determines the 

slope of the term structure. The parameter is calibrated from the term structure estimated as of the 

valuation date: 𝜗 =
2

𝑇
(𝑅𝑇 − 𝑟0) +

1

3
𝜎2𝑇. Parameter 𝑟0 is set to match the bond price to the quoted 

bond price as discussed below; 

10. Quoted Bond Price. If the valuation is performed as of the bond issue date, the quoted bond price 

is generally set to par (100) value. The par value must be consistent with the term structure 

parameters of the model. We calibrate the parameter 𝑟0 so that the quoted bond price equals to 

bond par value.  

                                                      

39 In most cases our tool produced the option prices with less than 1 bps difference from the DerivaGem tool. 
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11. Frequency of the coupon payments is set to semi-annual to match the coupon frequency of 

standard USD bonds. Generally, the parameter must match the frequency of the bond coupon 

payments; 

12. The interest rate model is set to “Normal – American”. 

Application of the DerivaGem tool is illustrated in the diagram below. 

  

E.2 Comparing DerivaGem tool to our ac.iOption tool 

The list below summarizes the differences between our tool and DerivaGem tool. 

► DerivaGem American-Normal model corresponds to the Hull-White (extended Vasicek) model. 

DerivaGem American-Lognormal model does not correspond to Hull-White (extended CIR) model 

and uses instead 𝜎(𝑟𝑡) = 𝜎 × 𝑟𝑡 volatility function. The Lognormal model has the properties, which 

are similar to the Hull-White (extended CIR) model properties: (i) the set of interest rates is bounded 

by zero from below and (ii) the volatility of interest rates is heterogeneous and increases with the 

increase in interest rates; 

𝑅𝑇 = 𝑟0 +
1

2
𝜗𝑇 −

1

6
𝜎2𝑇2 

𝜗 =
2

𝑇
× (𝑅𝑇 − 𝑟0) +

1

3
𝜎2𝑇 

�̂� = √250 × 𝑠𝑡𝑑𝑒𝑣 [𝑑𝑟𝑡] 
𝑃𝑏𝑢𝑙𝑙𝑒𝑡 = 𝑃𝑎𝑟 (100) 

Estimated call / put price 
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► DerivaGem tool does not take into account various options and provisions such as (i) interest 

deferral or (ii) bond amortization schedule, which can affect materially the results of the option 

calculations; 

► Only simple redemption penalty structure can be set in the DerivaGem tool. A standard penalty 

structure described in the Appendix D cannot be set within the DerivaGem tool; 

► DerivaGem tool calculates only the option price but does not calculate the annuity adjustment 

factor. Therefore, the option price cannot be converted into the equivalent option premium / 

discount. 

► Our tool is built as an extension of a generic optimization tool for one-dimensional Markov 

processes. It can be directly extended to other types of interest rate models or applied for other 

stochastic optimization models. DerivaGem tool can be applied exclusively to Normal and 

Lognormal interest rate models. 

 

E.3 Estimation of Normal-American model in DerivaGem 

Normal-American model in DerivaGem implements Hull-White (extended Vasicek) model, which is 

described by the following equation 

𝑑𝑟𝑡 = (𝜃𝑡 − 𝛼𝑟𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 

Mean-reversion parameter is assumed to be zero, 𝛼 = 0. 

E.3.1 Set of states 

The set of states in DerivaGem model is illustrated in the diagram below. 

Exhibit E.1 Set of states in Hull-White (extended Vasicek) modelled by DerivaGem 

 

The diagram shows the states in periods 𝑡 and 𝑡 + 𝑑𝑡 The states in each period are distributed uniformly 

with the distance between each two states equal to 

𝑑𝑟𝑡,𝑖 = 𝜎 × √3𝑑𝑡 

The states in period 𝑡 + 𝑑𝑡 are constructed by shifting all states in period 𝑡 uniformly by 𝜗𝑡𝑑𝑡 and adding 

two additional states highlighted in the diagram with blue color. A uniform shift of all states by parameter 

𝜗𝑡𝑑𝑡 ensures that the mean average state increases by 𝜗𝑡𝑑𝑡. A uniform distance 𝜎 × √3𝑑𝑡   between the 

period 𝑡 period 𝑡 + 𝑑𝑡 
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states ensures that no new states (with the exception of the two states highlighted in blue) are created in 

period 𝑡 + 𝑑𝑡. Note that this property holds only if the mean-reversion parameter is set to zero.   

E.3.2 Transition probabilities 

Suppose that the movement in the stochastic component of the process in each period is modelled using 

as follows: 

𝑑𝑊𝑡 ⇒ {

√3𝑑𝑡 𝑝𝑢
0 𝑝𝑚

−√3𝑑𝑡 𝑝𝑑

 

where 𝑝𝑢 , 𝑝𝑚, and 𝑝𝑑 (𝑝𝑢 + 𝑝𝑚 + 𝑝𝑑 = 1) are the probabilities of the stochastic component to move up, 

down, or stay the same. To be consistent with the standard Brownian motion, the 𝑝𝑢 , 𝑝𝑚, and 𝑝𝑑 probabilities 

must satisfy the following system of equations. 

{
(𝑝𝑢 − 𝑝𝑑) × √3𝑑𝑡 = 0
(𝑝𝑢 + 𝑝𝑑) × (3𝑑𝑡) = 𝑑𝑡

 

where the two equations ensure that the mean and the variance of the standard Brownian motion match 

the mean and the variance of its discrete approximation with the trinomial tree. The solution to the system 

of equations is 

{
𝑝𝑢 = 𝑝𝑑 =

1

6

𝑝𝑚 =
2

3

 

E.3.3 Summary 

To summarize: 

► Hull-White (extended Vasicek) model uses uniformly distributed set of states with the step 𝜎√3𝑑𝑡; 

► The set of states moves over time consistently with the drift function 𝜗𝑡𝑑𝑡; 

► The transition probabilities 𝑝𝑢 =
1

6
, 𝑝𝑚 =

2

3
, and 𝑝𝑑 =

1

6
 are set at constant values in each state so 

that the volatility of the numeric process is consistent with the volatility of the theoretical process. 

 

E.4 Estimation of Lognormal-American model in DerivaGem 

Normal-American model in DerivaGem implements Hull-White (extended Vasicek) model, which is 

described by the following equation 

𝑑𝑟𝑡 = (𝜃𝑡 − 𝛼𝑟𝑡)𝑑𝑡 + 𝜎𝑟𝑡𝑑𝑊𝑡 

Mean-reversion parameter is assumed to be zero, 𝛼 = 0. 

E.4.1 Set of states 

The set of states in each period 𝑡 is log-uniform: 
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𝑟𝑡,𝑖+1
𝑟𝑡,𝑖

= 𝑎 

Equivalently the condition implies that the ratio of each two consecutive states is constant. The states in 

period 𝑡 + 𝑑𝑡 are constructed by multiplying each period 𝑡 state by the same factor 𝜌𝑡 so that the ratio of 

two consecutive states in period 𝑡 + 𝑑𝑡 equals to the ratio in period 𝑡. Parameter 𝜌𝑡 is estimated so that to 

match the drift parameter of the interest rate process. 

E.4.2 Transition probabilities 

The change in the process between periods 𝑡 and 𝑡 + 𝑑𝑡 is described by the following equation 

𝑟𝑡+𝑑𝑡 ⇒ {

𝑎 × (1 + 𝜌𝑡)𝑟𝑡 𝑝𝑢
(1 + 𝜌𝑡)𝑟𝑡 𝑝𝑚
1

𝑎
× (1 + 𝜌𝑡)𝑟𝑡 𝑝𝑑

 

The average value of the interest rate process in period 𝑡 + 𝑑𝑡 equals 

𝜇𝑡+𝑑𝑡 = 𝜇𝑡 + 𝜗𝑡𝑑𝑡 = (1 + 𝜌𝑡) × 𝜇𝑡 

Therefore 

𝜌𝑡 =
𝜗𝑡𝑑𝑡

𝜇𝑡
 

DerivaGem uses the same symmetric transition probabilities 𝑝𝑢 =
1

6
, 𝑝𝑚 =

2

3
, and 𝑝𝑑 =

1

6
 in both Normal and 

Lognormal models. For the Lognormal model we estimate parameter 𝑎 which is consistent with the 

transition probabilities and respective volatility of the random variable 𝑟𝑡+𝑑𝑡. Volatility of the random variable 

𝑟𝑡+𝑑𝑡 is described by the following equation 

𝜎(𝑟𝑡+𝑑𝑡) = (1 + 𝜌𝑡)𝑟𝑡 × √
1

6
× (𝑎 − 1)2 +

1

6
× (

1

𝑎
− 1)

2

= 𝑟𝑡+𝑑𝑡 ×
𝑎 − 1

𝑎
√
1

6
× (1 + 𝑎2) = 𝑟𝑡+𝑑𝑡 × 𝜎 × √𝑑𝑡 

Parameter 𝑎 is estimated implicitly from the equation as follows: 

𝑎 − 1

𝑎
× √

1 + 𝑎2

2
= 𝜎 × √3𝑑𝑡 

Note that function 𝑓(𝑎) =
𝑎−1

𝑎
× √(1 + 𝑎2) is an increasing function of 𝑎 for 𝑎 > 1 and therefore the above 

equation has a single solution. The function 𝑓(𝑎) is presented in the diagram below on the 𝑎 ∈ [1,5] interval. 
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Alternatively, for small values of 𝑑𝑡, the value of 𝑎 can be approximated as follows: 

𝑎 = 1 + 𝜎 × √3𝑑𝑡 

E.4.3 Summary  

To summarize: 

► Lognormal model uses log-uniformly distributed set of states with the step 
𝑟𝑡,𝑖+1

𝑟𝑡,𝑖
= 𝑎~1 + 𝜎 × √3𝑑𝑡; 

► The states are multiplied by a constant factor 1 + 𝜌𝑡 = 1 +
𝜗𝑡𝑑𝑡

𝜇𝑡
 over time consistently with the drift 

function 𝜗𝑡𝑑𝑡 and to ensure that the log-uniform distribution of states is preserved; 

► The transition probabilities 𝑝𝑢 =
1

6
, 𝑝𝑚 =

2

3
, and 𝑝𝑑 =

1

6
 are set at constant values in each state so 

that the volatility of the numeric process is consistent with the volatility of the theoretical process. 



 

Konstantin Rybakov                                             Interest Rate Options                                           Page 63 of 89  

Appendix F ac.finance.SRM Tool 
  

  

In this section we provide a short description of the ac.finance.SRM tool that was developed as part of this 

guide and can be downloaded from the alexacomputing.com website. The modelling part of the interest 

rate option is implemented in java and the interface is implemented in Excel through custom functions that 

are executed by java virtual machine. A detailed description of the tool architecture can be found in 

alexacomputing.com.  

F.1 Overview 

The tool is developed based on the modelling framework for controlled one-dimensional Markov processes. 

A controlled Markov process generation requires a specification of the following parameters: set of states, 

transition probabilities, discount rates, objective function and other. The parameters are specified in the 

ac.SRM tool as follows. 

1. Transition probabilities are modelled based on the diffusion process specification of the interest 

rate process. Transition probabilities are modelled either using the functional form (derived from 

the diffusion process specification) or using the matrix form (if the diffusion process is modelled as 

a discrete tree). Default option is to model the transitional probabilities using respective functional 

form which describes the normal distribution of transition probabilities. 

2. Set of states is modelled either as a tree or a discrete collection of points in a one-dimensional 

interval [a, b] (which is the default option). The interval [a, b] and the collection of points are selected 

consistently with the transition probabilities to ensure that the probability that the interest rate 

process will stay within the interval is close to one. 

3. Set of modes is modelled as a binary set {0, 1}, where mode zero corresponds to non-exercised 

and mode 1 corresponds to exercised option. 

4. Discount rates and discount factors are calculated based on the modelled interest rate process. 

5. Objective function is modelled based on the cash flows of the underlying bond instrument.  

Currently the tool is limited to modelling four specific processes (but can easily be extended for other interest 

rate model specifications): 

(i) Two parametric models (Vasicek and CIR); and 

(ii) Two arbitrage-free models (Hull-White extended Vasicek and Hull-White extended CIR). 

The tool implements the above models by modelling the parameters based on the selected model. The tool 

also implements model validation, which includes validation of (i) process distribution and (ii) bond bullet 

prices.40    

Modelling is implemented using the following steps: 

1. Estimation of the selected interest rate process parameters.  

2. Construction of the interest rate tree.  

3. Construction of the interest rate calculator; and 

                                                      

40 The implemented models have closed-form equations for the process distribution and bullet prices, which are compared against the 
numerically calculated values. The closed-form equations are summarized in Section 2.2 and Section 3. 
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4. Modelling and pricing interest rate derivatives.  

The parameters estimation and option valuation steps are implemented and tested independently by 

separate java calculator classes. Parameters are estimated using as inputs (i) the historical 3-month yield 

series (to estimate the process volatility parameter); and (ii) the yield term structure (to estimate the drift 

parameter). The mean-reversion parameter is set by default to zero. 

F.2 Parameter estimation 

Parameter estimation is a key step to produce reasonable option values. A historical change in the yield 

rates (and respective model parameters estimated under different methods) is presented in Appendix H. 

This section described how to select the tool inputs to estimate model parameters under different 

approaches. 

Conceptually, there are two alternative parameter estimation methods: 

1. Random walk model. Under the approach, mean-reversion parameter is assumed to be zero, 

volatility is estimated based on historical ‘change in yield’ sample, and drift parameter is estimated 

based on the yield term structure.  

2. Mean-reversion model. Under the approach, mean reversion and drift parameters are estimated 

based on historical sample and assumptions on the long-term equilibrium and the volatility 

parameter is estimated based on the historical sample of residuals. Mean –reversion is modelled 

using HP filter modelling.  

 

F.2.1 Sample parameters 

As a first step, a sample is selected, which is used for the model parameters estimation. Normally, a short-

term (3-months) yield series is selected with the industry sector matching the borrowing entity industry 

sector (e.g. Industrial, Financial, or other) and the credit rating of the series matching the tested transaction 

credit rating. 

After a series is selected for parameters estimation, the following sample parameters must be specified. 

1. Sample size parameter 𝑛. The larger the sample size, the more significant is the dependence of 

the parameters on the market long-term behavior and less dependence on recent changes in the 

market. The parameter is set using the ‘sample-size’ keyword. 

2. Probability threshold to remove the sample outliers. The changes in the yield series are assumed 

to have a normal distribution. If a certain change is too large and not consistent a change in a 

normal distribution, the observation is removed from the sample. Outliers are normally identified for 

a yield series with daily frequency. The parameter is set using the ‘outlier-prob-threshold’ keyword. 

3. Parameter 𝜏, which is the period between consecutive yield series observations applied to estimate 

the change in the yields series. The parameter is set using the ‘volatility-sample-period’ keyword. 

The larger is the 𝜏 parameter, the less is the yield series affected by the outliers. 

 

F.2.2 Random walk model 

The approach is applied if the value of the ‘state-long-term’ is empty (or zero). The parameters are 

estimated as follows under the approach. 
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(i) Mean-reversion. Mean-reversion parameter is automatically set to zero. 

(ii) Drift. If term structure parameter is empty, drift parameter is set at zero. Otherwise, drift parameter 

is estimated using equations described in Section 3.4. Parameter 𝑇 in the equations is set using 

the ‘term-structure-max-tenor’ parameter key. By default, the parameter is set equal to the tested 

loan maturity term. If options are estimated for multiple scenarios, the parameter should be set 

consistently across the scenarios (e.g. set to maximum maturity term in the scenarios). 

(iii) Volatility. Volatility may be estimated using multiple approaches as discussed in Section 3.3. The 

volatility estimation method is set using ‘volatility-method’ key, which values can be set to the 

following list: ‘volatility-method-stdev’, ‘volatility-method-ewma’, or volatility-method-garch’. The 

default value is ‘volatility-method-stdev’, which corresponds to volatility estimation approach based 

on a standard deviation of the historical yield change series. The volatility estimates are described 

by equations (3.3) and (3.4). 

The parameters estimates can be overridden manually. 

F.2.3 Mean-reversion model 

The approach is applied if the value of the ‘state-long-term’ is non-empty (or non-zero). The parameters 

are estimated as follows under the approach. 

(i) Mean-reversion.  

(ii) Drift. 

(iii) Volatility. Volatility parameter is estimated based on the HP residuals using the methods described 

in the previous section. 

 

F.3 Single option 

The option modelling is implemented either (i) as a collection of two functions (where the first function 

models option parameters and the second function models the option value); or (ii) as a tool, which 

implements detailed steps of option modelling. 

The option estimation is performed by executing the following steps: 

1. Select the interest rate model and estimate the model parameters; 

2. Set the option parameters and estimate the option; 

3. Review the model validation output and review the results of the option estimation. 

Implementation of the above steps is discussed below. 

F.3.1 Option implementation via functions 

The implementation via functions was included so that option calculation could be added directly to other 

tools. The steps 1 and 2 are implemented respectively as two functions discussed below. Validation of the 

function implementation was performed by comparing the functions output against the tool output. 

Function for model parameters estimation 

 

Function for option value calculation 
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F.3.2 Option implementation as a tool 

Below we show the tool print screens to illustrate the application of the tool. The example is illustrated for 

the Hull-White (extended Vasicek) model. The tabs highlighted in yellow are the input tabs.  

1. Input tabs. 

► Input tabs (‘ylds’ and ‘sample’) are highlighted in yellow. The ‘ylds’ tab includes the data on the 

yield term structure and historical 3-month yield sample.  

► The key model inputs are set in the ‘Parameters’ and ‘Summary’ tabs. Auxiliary input parameters 

are set in the ‘calc’ tab. Specifically, 

► The objective of the ‘Parameters’ tab is to estimate the underlying stochastic model parameters 

such as process volatility and drift parameters; 

► The parameters, which are specified in the ‘Summary’ tab, describe the terms and conditions of 

the tested transaction. 

► Parameters set in other tabs specify the implementation of the interest rate tree and specify 

whether certain parameters of the model are calibrated to ensure the par value of the bullet 

bond. 

A more detailed description of the model parameters is provided below.  

2. Parameters “params” tab.  

The process parameters on the tab are estimated as follows: 

► The volatility parameter is estimated based on the sample of short-term (3-months) yield rates 

with the credit rating matching the credit rating of the tested transaction. The sample size of the 

3-month yield sample is specified using the sample-size keyword. The estimated volatility 

parameter can be manually overridden by the user by specifying the custom value in the yellow 

highlighted cell. By default, the sample size parameter is set to 250 (approximate number of 

business days in a fiscal year). The tab includes a graph with volatility estimated for different 

sample sizes. The graph shows how materially the volatility depends on the sample size; 

► The drift parameter is estimated using the yield term-structure and the equations described in 

Section 3.4. For Vasicek and CIR models the estimated constant drift parameter can be 

overridden manually by the user. The estimated parameter depends on the parameter 𝑇 which 

is set using the term-structure-max-tenor parameter. By default, the parameter is set equal to 

the tested transaction maturity term. 

For the Hull-White (Vasicek) and Hull-White (CIR) models the estimated drift parameter is a 

function and therefore cannot be overridden. 

► Mean-reversion parameter is by default set to zero. 

The tab with estimated model parameters is shown in the diagram below. 
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Exhibit F.1 ac.iOption tab with parameters estimation output 

 

 

3. Summary (“summary”) tab. The tab with the option parameters and option estimation output is 

shown in the diagram below. 

The tab includes both the input parameters and the estimation output. The following input 

parameters are used: 

► Terms of the testes transactions such as valuation date, credit rating, maturity term, length of 

the tree step (dt), and coupon payment parameters (fixed coupon rate and coupon payment 

frequency).  

The valuation date and credit rating are specified for reference purpose only. The yield term 

structure and 3-month yield sample (used for volatility and drift parameter estimation) must be 

consistent with the valuation date and credit rating parameters. 

Default length of the interest rate tree is set at dt=0.25 to match a 3-month period. 

By default, the coupon rate is replaced with the estimated coupon rate which corresponds to the 

par bullet value of the bond. 
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Semi-annual coupon frequency is used as a default value to match the frequency of the US$ 

bond yield rates (SA frequency, 30/360 day count). 

► Bond redemption premium schedule. 

► Other terms which effect the bond cash flows such as bond amortization schedule or bond 

interest payment deferral.  

The following output is presented in the tab: 

► Call/put option fixed price, annuity adjustment factor, and call/put option annual premium. The 

annual premium is used to adjust the yields on callable bonds; 

► The price of the callable/putable and bullet bonds. The call/put price is calculated as the 

difference between the prices of the callable/putable and the bullet bonds; 

► Results of the estimation validation procedure which include: comparing the numerical and 

theoretical (i) bond bullet prices; (ii) terminal state distribution mean; and (iii) terminal state 

distribution standard deviation. In addition, the validation procedure estimates the implied 

drift/volatility parameters based on the numerical terminal state distribution and compares the 

implied values to the values used in the model. The purpose of the validation procedure is to 

test that (i) the numeric tree was constructed correctly and to test that (ii) the backward recursion 

in the calculator (applied to calculate bond prices) is implemented correctly. 

The tool tab is presented below. 

Exhibit F.2 ac.iOption tab with the output of the option estimation 

 

 

4. Calculator tab 

The calculator tab specifies the java functions which are used to construct the option tree model 

and the option tree calculator. The tab also includes some auxiliary but important parameters. The 

parameters are set to default values by the tool by can be modified by the user on the tab. The list 

of auxiliary inputs includes the following parameters: 
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► Tree state parameters specified by dx-down, dx-up, X-min, X-max and X-count keys. The 

parameters specify (i) the distance between the neighbour states; (ii) the minimum and 

maximum states; and (iii) the number of states used to model the tree; 

► The adjust-to-par parameter specifies whether the bond fixed coupon rate specified by the user 

is replaced by the model-estimated rate to ensure that the bullet bond is values at par. In a 

typical case, the option is evaluated at the bond issue date and therefore the bullet bond must 

be priced at par. If however the option is valued at a date different from the issue date, then the 

parameter should generally be set to zero. 

► The initial state of the tree model is set equal to the 3-month yield rate of the term structure. 

► The tab also includes the parameter which specifies whether a tree or a grid structure is sued 

to construct the tree. The grid structure assumes a uniform set of states in each period t.  

   

5. Output tabs. In addition to the ‘summary’ tab the output tabs include(i) ‘cf’ tab with the bond cash 

flows; (ii) ‘charts’ tab (presented below); (iii) ‘value’ tab with the tree of the callable/putable bond 

values; (iv) ‘bullet’ tab with the tree of the bullet bond values; (v) ‘action’ tab with the option exercise 

/ not exercise action tree; and (vi) ‘D’ tab with the option tree state distribution probabilities. 

The output of the ‘charts’ tab is presented in the exhibit below. The tab shows two graphs (i) the 

terminal state distribution; and (ii) the state tree including state bounds, fixed (calibrated) bond 

coupon rate; average yield rate; and the boundary between the option exercise / not exercise 

actions. 

The exercise / not exercise boundary increases over time and converges to the bond coupon rate. 

Exhibit F.3 ac.iOption tab with the output charts 

 

 

6. Other tabs. Other tabs include the ‘config’ and ‘validate’ tabs. The ‘config’ tab includes a full list of 

input and output parameter keys. The ‘validation’ tab presents more detailed results of the model 

validation analysis.  
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F.4 Sample of options 

In a typical IRB analysis, not only the tested transaction is a callable transaction but many CUTs, included 

in the sample to estimate the arm’s length interest rate, are also callable. Therefore, the yield rates on the 

CUTs must also be adjusted.  

A natural approach to calculate a sample of options is to create an option calculator for each individual 

option. Note however that option estimation is in general both time and memory intensive task. Therefore, 

calculation of a sequence of options may be time and memory intensive process. 

The sample option calculator tool, included as part of ac.iOption package, makes simplifying assumptions 

on the CUTs prepayment options. The assumptions ensure that the option tree constructed for the tested 

transaction can also be applied for the sample CUTs.41 The following simplifying assumptions are made: 

1. Maturity term. Remaining maturity term for each CUT (denoted as 𝑇𝑖) is set equal to the maturity 

term of the tested transaction (denoted as 𝑇); 

2. Volatility and drift parameters. The same parameters are used as the volatility and drift parameters 

applied for the tested transaction. (Note that parameters are estimated based on the credit rating 

of the tested transaction); 

3. Coupon rate. The coupon rate is calibrated to ensure that the bullet value of the bond equals to the 

par value; 

4. Penalty structure. The penalty structure of each CUT is modified as follows: 

► The remaining duration of the make-whole provision is rescaled to match the modified maturity 
term of the CUT. If 𝑇𝑖

𝑚𝑤 denotes the remaining duration of the make-whole provision, then the 

modified duration is calculated as follows: �̃�𝑖
𝑚𝑤 = 𝑇𝑖

𝑚𝑤 ×
𝑇

𝑇𝑖
; 

► The post-make-whole penalty structure is typically a linear function. The redemption penalty is 

reduced from𝑥𝑖  (which is applicable at the make-whole termination date) to zero (which is 

applicable at the maturity date). The value 𝑥𝑖 is modified to ensure that the slope of the penalty 

structure prior to and after adjustments are the same. The modified penalty �̃�𝑖 is calculated as 

follows: �̃�𝑖 = 𝑥𝑖 ×
𝑇− �̃�𝑖

𝑚𝑤

𝑇𝑖−𝑇𝑖
𝑚𝑤. 

Effectively the assumptions imply that a callable tested transaction and CUT are comparable to each other 

in terms such as maturity, coupon rate, and interest rate process parameters and the difference in the 

tested transaction and CUT options is due only to differences in the penalty structure.42 

The sample option calculator recalculates the bond cash flows for each individual CUT based on the CUT 

prepayment penalty structure and then recalculates the CUT option value and respective option annual 

premium. The yield on the callable CUT is adjusted downward by the option premium value. 

                                                      

41 Construction of the option tree is the most time and memory intensive part of the option valuation process.  

42 If the credit ratings and tenor terms of the CUTs are selected so that to match the terms of the tested transaction, then the 
assumptions do not change significantly the CUTs call option adjustment. However, the assumption that the CUTs are priced at par 
on the valuation date of the tested transaction is generally not true. The exact estimation of the CUTs prepayment option may result 
in the elimination of some of the CUTs from the sample due to the fact that the CUTs should have been prepaid according to the 
option valuation model. Note that the spread between the yield and coupon rate is one of the criteria which is applied in sample 
screening. 
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The objective of the approach is to avoid an in-depth assessment of each individual CUT prepayment 

provisions. If both the CUT and the tested transactions are callable, then the yield on the CUT is either not 

adjusted or adjusted (partially or fully) only if the penalty structure of the CUT prepayment option makes it 

expensive to exercise the option.   

F.5 Pre-calculated options 

An alternative approach to estimating a sample of the options is to create a single table (database) of 

options pre-calculated for a range of different option parameters. Each specific option is calculated then by 

(i) matching the option parameters to the parameters included in pre-calculated option database; and (ii) 

interpolating the matched option prices. The following parameters determine the option value:43 

1. Volatility parameter; 

2. Drift parameter; 

3. Maturity term; 

4. Make-whole-termination date; 

5. Post-make-whole redemption penalty; 

6. Difference between the coupon and the yield rates;  

In total there are seven parameters that determine the value of the option. Suppose that five different values 

are assumed for each parameter. Then the total number of different pre-calculated options is  

𝑛 = 57 = 78,125 

For each specific set of parameters, 𝑘 = 27 = 128 neighbor parameter sets must be identified, and the 

option value is estimated by interpolating the 128 pre-calculated option values for the neighbor sets of 

parameters. 

                                                      

43 The list includes only the parameters which have the most material impact on the option value. 
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Appendix G Examples 
  

  

xx 

G.1 Volatility estimation 

Volatility estimate based on historical short-term yield data can potentially be very sensitive to the yield 

outliers. To illustrate it by an example, we provide below an example in which the volatility is estimated 

based on August 2013 – August 2014 historical B rated one-year44 yield series as reported by Reuters. The 

yield series is shown in the exhibit below. 

Exhibit G.1 Short-term yield series used in volatility estimation 

 

The series shows a large downward jump in the yield rates from 4.25% on 7 May 2014 to 2.96% on 8 May 

2014. The jump is due to the change in the Reuters yield estimation methodology and does not represent 

actual volatility in the yield rates. Reuters adjusted materially all sub-investment yield series on that date. 

The exhibit below shows how the downward adjustment affects the estimated volatility parameter. The 

volatility series estimated for different sample sizes is presented in the exhibit below. The left panel shows 

the volatility prior to removing the yield outlier and the right panel shows the volatility after removing the 

outlier. 

Exhibit G.2 Volatility prior to (left panel) and after (right panel) removing the outlier 

  

The volatility graph on the left panel shows that there is an outlier that have a material impact on the 

estimated volatility. The estimated volatility parameter based on a sample of 250 business days was 1.36%. 

                                                      

44 Reuters did not report in 2014 the yield series with maturities shorter than one-year. 
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The volatility graph on the left panel shows the volatility estimate after removing the yield outliers. The 

volatility was reduced from 1.36% to 0.14% after four outliers were removed from the sample.45 

The filter is implemented as follows: 

1. Estimate the mean and standard deviation of the sample used in volatility estimation. Estimate the 

critical value such that the probability of a sample absolute value to exceed the critical value is 

smaller than some fixed alpha value (by default set at 𝛼 = 10−5); 

2. Remove all elements from the sample which absolute values exceed the critical value. 

3. If outliers were identified, repeat step 1 until no new outliers identified or maximum number of 

iterations is exceeded (current maximum number of iterations is set at 10). 

   

G.2 Transition probability estimation 

The problem with the direct estimation of the transition probabilities is illustrated in the diagram below. The 

problem is illustrated with a trinomial tree example 

 

The red lines in the diagram show the theoretical movement in the interest rate with 𝜇 = 𝜗𝑡𝑑𝑡 upward drift. 

The black circles show actual discrete states used in the numerical modelling. At step one, prior to the 

transition probability adjustment, the red states are matched to the closest black sets and the probabilities 

are calculated based on the theoretical 𝜇 and 𝜎 values estimated at state 𝑟𝑡,𝑖. After matching the red states 

to the actual black states, the drift 𝜇 = 𝜗𝑡𝑑𝑡 in the interest rates is effectively reduced to zero. The impact 

on the volatility can also be generally material. Therefore, to ensure consistency with the theoretical model, 

the probabilities in the black states must be adjusted. Under the contraction mapping transition probability 

adjustment approach, the theoretical mean and standard deviation parameters 𝜇 and 𝜎 are replaced with 

the adjusted values �̃� and �̃� such that the mean and standard deviation estimated based on the actual 

(black) discrete states match the theoretical 𝜇 and 𝜎 parameters. 

The results of the transition probability adjustment are illustrated for the two alternative approaches 

discussed in Appendix B.3. The example was estimated using the Hull-White (extended Vasicek) model 

                                                      

45 In practice volatility estimated based on Bloomberg series typically exhibits a much more regular behavior compared to the volatility 
estimated based on Reuters yield series. This is due to the fact that Reuters estimated the yields as Treasury rates plus risk spread, 
where the risk spread could be constant for an extended period of time and periodically adjusted materially up or down. As a result, 
the volatility estimated based on Reuters’ yields can often be measuring the volatility of Treasury rates and be very low. (Since the 
last time we used Reuters’ yields in the option valuation analysis, Reuters updated their methodology for yield series estimation. We 
have not tested the impact of the change in the methodology on the results of volatility estimation).  

period 𝑡 

period 𝑡 + 𝑑𝑡 

state 𝑟𝑡,𝑖 



 

Konstantin Rybakov                                             Interest Rate Options                                           Page 74 of 89  

with the following parameters: 𝛼 = 0, 𝜎 = 0.76%. The drift parameter was estimated based on the increasing 

term structure of yield rates with the equivalent constant drift parameter equal to 𝜗 = 0.68%. 

Theoretical and numerical model parameters for unadjusted transition probabilities are described in the 

exhibit below. 

Model name μT σT μ σ 

This numerical model 3.19% 1.52% 0.03% 0.68% 

Hull-White, extended Vasicek 6.47% 1.70% 0.68% 0.76% 

Difference  -3.28% -0.18% -0.66% -0.08% 

The example illustrates that if the transition probabilities are unadjusted then the impact on both mean and 

standard deviation can be material (typically the impact on the mean is larger than the impact on standard 

deviation). In the example the drift parameter was reduced from 𝜗 = 0.68% to a value close to zero (𝜗 =

0.03%) consistently with the above diagram. The call option premium was estimated respectively at 

𝑐𝑎𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 = 0.57%. 

Next we adjusted transition probabilities using the “contraction mapping” approach. The numeric and 

theoretical parameters are described in the exhibit below. 

Model name μT σT μ σ 

This numerical model 6.47% 1.69% 0.68% 0.76% 

Hull-White, extended Vasicek 6.47% 1.70% 0.68% 0.76% 

Difference  0.00% -0.01% 0.00% 0.00% 

After adjusting the transition probabilities, the state distribution of the numerical model matches closely the 

theoretical state distribution. With the positive drift parameter, the call option premium reduced to 

𝑐𝑎𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 = 0.33%. Due to precision, efficiency and robust performance, the transition probability 

adjustment based on contraction mapping estimation is applied as the default approach in the interest 

option valuation tool.  

For completeness of the example exposition, we demonstrate also the performance of the transition 

probability adjustment algorithm based on solving the probability deviation minimization problem (described 

in the Appendix B.3). The numeric and theoretical parameters are described in the exhibit below. 

Model name μT σT μ σ 

This numerical model 6.32% 1.71% 0.65% 0.76% 

Hull-White, extended Vasicek 6.47% 1.70% 0.68% 0.76% 

Difference  -0.15% 0.01% -0.03% 0.00% 

The call option premium was respectively estimated at 𝑐𝑎𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 = 0.35%. The deviation of the numeric 

parameters from the theoretical values is reasonably small. The deviation is primary due to the fact that in 

states with low probability, the adjusted probability moves into the negative values zone in which case it is 

capped by zero value. Capping the adjusted probabilities with zero floor produces an error in mean and 

standard deviation matching algorithm. In most cases the effect is not material. Overall however the 

approach showed to be less accurate, less time efficient, and less robust compared to the contraction 

mapping approach.  

G.3 Call option 

The section presents standard output of the option valuation tool and discusses how the output should be 

interpreted. 
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G.3.1 Hull-White (extended Vasicek) 

The example discussed in this section was described in Appendix F.3. The example was estimated using 

the Hull-White (extended Vasicek) model with the following parameters: 𝛼 = 0, 𝜎 = 0.76%. The drift 

parameter was estimated based on the increasing term structure of yield rates with the equivalent constant 

drift parameter equal to 𝜗 = 0.68%. The maturity term was set at 5 years. The credit rating of the underlying 

bond transaction is Ba3/BB-. 

G.3.1.1 Model estimation 

The value of the call option premium was estimated at 𝑐𝑎𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 = 0.33%. The output of the call option 

estimation tool is presented in the diagram below. 

Exhibit G.3 Output of option estimation tool 

 

The coupon rate in the model was calibrated at 4.40%, 9 bps lower than the 5-year MYCA rate equal to 

4.49%. The coupon rate is shown by the green dashed line in the diagram. The expected short-term rate 

(shown with the blue line) increases in the model from 3.07% (3-month BB- yield rate reported by 

Bloomberg) to 6.47%. The increase in the short-term rate is consistent with the increasing term structure 

of the yield rates. The short-term rate needs to increase above the 5-year BB- yield rate (equal 4.49%) so 

that the 5-year rate can be replicated as a sequence of increasing short-term rates. 

The call option is exercised below the red line. As the bond outstanding term to maturity approaches zero, 

the bond is exercised when the yield rate is below the bond coupon rate. The black line shows the bounds 

of the interest rate state set. 

Suppose now that the option has a 3% penalty if exercised in the first 2.5 years and zero penalty afterwards. 

The diagram for the option with the penalty provision is shown below. 
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Exhibit G.4 Output of option estimation tool 

 

The option premium is reduced to 𝑐𝑎𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 = 0.10%. The diagram also shows that the option is never 

exercised when the penalty is close to expiration. After the penalty is reduced to zero, the diagram becomes 

the same as the diagram with no penalty. 

G.3.1.2 Model validation 

Model validation based on the terminal distribution parameters and implied parameters was illustrated for 

the example in the Appendix F.3. [Zero-coupon price validation] In this section we show how the results are 

validated directly against the output of the DerivaGem tool.  

The output of the DerivaGem tool is presented in the exhibit below. As discussed in Appendix E.1, the 

coupon rate was calibrated so that the quoted bond price was equal to par. 

Exhibit G.5  Validation of option estimation: DerivaGem output 
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The estimated call option premium 𝑐𝑎𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 = 0.33% matches very closely the premium (0.33%) 

estimated in our tool and presented in Appendix F.3. We used consistently the DerivaGem tool to validate 

the results of the option calculation and in each case the difference between the DerivaGem tool and our 

tool would not exceed 1-2 bps when applied to Vasicek or Hull-White (extended Vasicek) model. 

After further review of the DerivaGem output we observed the following facts. 

► Estimated terminal distribution. The mean and standard deviation of the terminal distribution in 

DerivaGem and out tool were respectively 𝜇 = 6.12%, 𝜎 = 1.70% and 𝜇 = 6.47, 𝜎 = 1.69%. We 

observe certain discrepancy in the estimated mean parameter. The average drift parameter was 

estimated at �̅� = 0.61% while in our tool it was estimated at �̅� = 0.68%. 

► Drift parameter. Estimated drift parameters were different. The diagram that shows two cumulative 

drift functions estimated in DerivaGem and our tools. 

Exhibit G.6 Cumulative drift estimated in DerivaGem and out tool 

 

G.3.2  Hull-White (extended CIR) 

To compare the result under Hull-White (extended Vasicek) and Hull-White (extended CIR) models, we run 

the model with the same parameters as described in the previous section but assuming the Hull-White 

(extended CIR) model specification. 

G.3.2.1 Model estimation 

Under the Hull-White (extended CIR) model, the estimated volatility parameter is 𝜎 = 5%. Note that the 

actual volatility 𝜎𝑡 = 𝜎 × √𝑟𝑡 ranges between 0.88% and 1.28% along the average path of the interest rates 

and is higher than the 𝜎 = 0.76% estimated in the Hull-White (extended Vasicek) model. The call option 

premium is also respectively higher and is equal to 𝑐𝑎𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 = 0.26%. The call option diagram in the 

Hull-White (extended Vasicek) model is similar to the diagram in the previous example. 
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Exhibit G.7 Output of option estimation tool 

 

Due to higher volatility of the interest rates (especially in the area of high interest rates), the bounds of the 

interest rate states set is wider compared to the state set constructed for the Hull-White (extended Vasicek) 

model. 

To test further comparability of the Hull-White (extended CIR) and Hull-White (extended Vasicek) models, 

we overrode the historical volatility parameter 𝜎 = 5% with a lower value 𝜎 = 4% (so that the actual volatility 

𝜎𝑡 = 𝜎 × √𝑟𝑡 ranges between 0.70% and 1.02% along the average path of the interest rates). The call option 

premium reduced to 𝑐𝑎𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 = 0.19% and was comparable to the call option premium (0.20%) 

estimated under the Hull-White (extended Vasicek) model. 

[Sensitivity to interest rate] 

G.3.2.2 Model validation 

Note that the DerivaGem tool does not implement the Hull-White (extended CIR) model and therefore 

cannot be used to validate the estimation output of the Hull-White (extended CIR) model. Therefore, the 

numerical model can be validated only against the respective theoretical model. 

G.4 Put option 

The put option estimation is illustrated with the same example of Hull-White (extended Vasicek) model that 

was described in Appendix F.3. 

G.4.1 Hull-White (extended Vasicek) 

In this section we compare the results of the put option calculation against the results of call option 

estimation for the Hull-White (extended Vasicek) model. 

G.4.1.1 Model estimation 

The value of the put option discount was estimated at 𝑝𝑢𝑡 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 = 1.10%. The output of the call option 

estimation tool is presented in the diagram below. 
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Exhibit G.8 Output of option estimation tool 

 

As can be observed from the example, the put option discount is significantly higher than the call option 

premium. This is typically the case when the term structure of the yield rates is increasing. The term 

premium between the one-year and five-year rates in the example is 1.22%. Therefore, after adjusting the 

five-year interest rate for the presence of the put option discount, the term premium component in the five-

year rates is reduced from 1.22% to 0.12%. The arbitrage argument, which explains why the put option 

discount is generally large, is provided in the next section.  

G.4.1.2 Put option and term premium arbitrage. 

Suppose that F is a financing subsidiary that receives funds from the corporate group parent P and lends 

them to borrowing subsidiaries Bi. Then the subsidiary F can apply the following lending strategy to 

generate arbitrage profits (illustrated in the diagram below). 

Exhibit G.9 Illustrative example of the term premium arbitrage 

 

To match the funds received from the borrowers Bi and repaid to the parent P, the financing subsidiary F 

exercises the required number of put options whenever the debt to the parent P is due. 

In the example, the financing cost for the subsidiary F is 1% and the interest income is 3% (= 6% - 3%). 

The profit 2% (= 5% - 3%) is generated due to a risk-free arbitrage produced by the term-premium trading. 

The example illustrates the following points. 
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Note! The example has an important implication in transfer pricing analysis. The intercompany loans are 

often issued as on-demand loans without specifying an exact maturity term of the loan. The on-demand 

term of the loan implies that the repayment of the loan principal amount can be demanded by the lender at 

any time without any penalties. Because the maturity term of the loan is not specified, it can be treated both 

as a short-term or a long-term loan. The assumption about the loan maturity will generally have a very 

material impact on the estimated interest rate (since term premium is one of the key factors that affects the 

interest rate estimate). However, since on-demand feature on the loan is interpreted as the presence of the 

put option, the adjustment of the interest rate for the presence of the put option will reduce very materially 

the term premium component of the interest rate. In practice on-demand loan can be treated as effectively 

a short-term loan.   

G.4.1.3 Model validation 

The estimated put option discount 𝑝𝑢𝑡 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 = 1.09% matches very closely the discount (1.10%) 

estimated in our tool and presented in Appendix F.3. DerivaGem and our tool produce closely matching put 

and call option price numbers in the case of Hull-White (extended Vasicek) model. 

G.5 Debt Refinancing 

Example below shows that as the financing cost is decreasing materially for a company, the company has 

a strong incentive to exercise the call option (even if the prepayment option includes a penalty structure) 

and to refinance its debt at a lower cost. Therefore, presence of the call option in an intercompany loan 

agreement can potentially represent a transfer pricing risk. Tax authorities may argue that while the 

interest rate on the loan was at arm’s length on the loan issue date, the interest rate may not be at arm’s 

length over the life of the loan if the loan refinancing could result in lower financing costs. Therefore, in the 

presence of the call option the market interest rates should be monitored on a regular basis to ensure that 

the borrower does not have an incentive to exercise the prepayment option. Including a penalty structure 

mitigates partially the loan prepayment transfer pricing risk. 

Example describes a debt refinancing history of Compass Minerals International Inc. (CMP) based on the 

respective Bloomberg data. In May 2009 CMP issued a 10-year US$100 million callable senior unsecured 

note. The call option becomes effective starting in June 2014 (five years after the issue date) with the initial 

penalty equal to 4% which is reduced then uniformly to zero in 2017 (two years before the note maturity 

date). The coupon rate on the note is fixed at 8%. The note transaction was rated by Moody’s at B+ on the 

note issue date. 

In September 2010 the note was upgraded by Moody’s to Ba2 rating. The yield rates on sub-investment 

debt reached its peak in 2009 and then decreased significantly over time. The history of interest rates 

(represented by Bloomberg 10-year B rated yield series) is presented in the exhibit below. 
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Exhibit G.10 History of yield rate movement 

 

As soon as the note becomes callable in June 2014, CMP exercises the call option and repays the note 

(including the 4% redemption penalty payment). Contemporaneously with debt repayment, CMP issues a 

new 10-year US$250 million senior unsecured note (with the make-whole provision which termination date 

is set two months prior to the note maturity date). The coupon rate on the note is fixed at 4.875%. The note 

transaction was rated by Moody’s at Ba2 on the note issue date. 

This example illustrates that the following factors affect the prepayment risk. 

► Significant decrease in the market interest rates; 

► Improvement in the tested entity creditworthiness; 

► Decrease in the remaining maturity term of the loan 

In the example, the 8% note with five-year remaining effective maturity was refinanced with the 4.875% 

note with 10-year maturity term. 

G.6 Prepayment risk 

 

G.6.1 Prepayment risk adjustment 

Prepayment risk may potentially be an important factor, which may affect materially the yield rates on the 

bonds. An exhibit below illustrates a large variation in the yields on the binds issued by the same entity. 

The variation is explained by a difference in the bonds coupon rates and respectively large difference in the 

bonds prepayment risk. 

ISIN code Issuer Maturity Next call date 
Redemption 

penalty 
Coupon 

rate 
Yield rate46 

US629377CE03 NRG ENERGY INC 15-Jan-28 15-Jan-23 2.88% 5.750 4.453 

US629377CQ33 NRG ENERGY INC 15-Feb-29 15-Feb-24 1.69% 3.375 3.570 

US629377CH34 NRG ENERGY INC 15-Jun-29 15-Jun-24 2.63% 5.250 4.235 

US629377CR16 NRG ENERGY INC 15-Feb-31 15-Feb-26 1.81% 3.625 3.720 

US629377CS98 NRG ENERGY INC 15-Feb-32 15-Feb-27 1.94% 3.875 3.904 

In the example, the bonds with higher remaining maturity term have almost 1% lower yield rates. The 
difference is explained by more than 2% difference in the coupon rates. Prepayment risk pushes the yield 

                                                      

46 Yield rates were obtained as of 15 October 2021. 
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rate closer to the coupon rate resulting in the yield discrepancy presented above. In the example, there 
should be ~1 yield adjustment on the callable yields with high coupon rates. 

G.6.2 Exercised callable bonds 

 

G.6.3 Callable bonds with improved credit rating 

 

G.6.4 Callable bonds with decreased remaining maturity term 

 

G.7 Short-term loan with an option to lock into a long-term financing 

The type of financing may arise, for example, in the case if the borrower needs to secure the funds for 

short-term purposes but would prefer to have an option to convert it into a long-term financing if necessary. 

Under the financing type, the objective is to minimize the financing cost by removing term premium from 

the financing interest rate. 

The loan maturity can be set as a long-term maturity with the clause that the interest rate is renegotiated 

on an annual basis. In the case if the lender and the borrower disagree on the interest rate, the borrower 

has the option to lock into a long-term financing, The option represents a benefit to the borrower and 

therefore the short-term interest rate on the loan must be adjusted for the option premium. 

The option is modelled in the ac.finance.SRM tool as the loan redemption premium, which is contingent on 

the current market yield rates. The redemption premium is estimated as the fair market value of the long-

term bond. The borrower has incentive to exercise the option whenever the marker rates go up at the 1-

year maturity term and the market value of the long-term loan is below the par value. 

Exhibit G.11 Option exercise states 

 

(In the example, a short-term loan was modelled using a 1-year fixed 1.7% interest loan (with one year term 

approximated by 10 discrete periods) and long-term financing was modelled with a 5-year loan with fixed 

3.25% interest rate). 
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Appendix H Empirical Analysis of Interest Rate Model 
Parameters 

  

  

This section reviews the historical behavior of the estimators for the interest rate model parameters. The 

analysis of historical data was applied in this guide to select the default parameter estimation model 

(discussed in Section 3).  

H.1 Short-term yield rates 

The historical behavior of short-term (3-month) Industrial yield rates (as estimated by Bloomberg) is 

presented in the exhibit below. 

Exhibit H.1 Historical behavior of short-term yields 

 

The historical period was selected to include the period of very high market volatility (March-April 2020, the 

impact of the COVID-9 public health crisis), period of moderately-high in market volatility (January 2019) 

and periods of relatively low market volatility. The purpose of including periods with different markets 

behavior is to assess the impact of market conditions on the estimated interest rate model parameters. 

H.2 Volatility parameter 

The volatility of the market yield rates is presented in the exhibits below. As the first step, we estimate 

market volatility for the Vasicek model with zero mean reversion parameter. The volatility was estimated 

based on 1-month changes in the yield rates (normalized to annual volatility) using EWMA model with 𝜆 =

0.95 parameter. 
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Exhibit H.2 Historical volatility (zero mean-reversion parameter) 

Vasicek model CIR model 

 

 

The exhibit above shows an extremely high volatility parameter estimate during high market volatility period. 

This is the result of the random walk model assumption, which produces unrealistic volatility parameter 

during extreme movements in market interest rates.47 

The above example illustrates the importance of the mean-reversion assumption in the interest rate 

modelling. 

H.3 Drift parameter 

Drift parameter determines the upward slope of the yield rate term structure. Exhibit below shows the 

estimate of the drift parameter matched to the 10-year slope of the term structure. 

Exhibit H.3 Historical drift parameter (zero mean-reversion parameter) 

Vasicek model CIR model 

  

 

H.4 Mean-reversion parameter 

Mean-reversion parameter determines speed of convergence of market interest rates to the long-term 

equilibrium. In this section, we review the behavior of the mean-reversion parameter under two alternative 

estimation approaches: (i) mean-reversion parameter calibrated to the long-term equilibrium value; and (ii) 

mean-reversion parameter estimated using HP filter model. 

H.5 Summary 

The analysis of historical data was performed to identify the default approach to parameter estimation, 

which produces reasonable and intuitive results. Specifically, 

                                                      

47 Random walk model assumes that past extreme behavior in the market rates will also continue in the future. 
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(i) Drift and volatility parameters change significantly over time and should be estimated as of each 

specific valuation date to reflect current market conditions. Mean-reversion parameter measures 

speed of convergence to the long-run steady state and may be viewed as a static parameter which 

should be updated only periodically (e.g. annually).  

(ii) Simple model with zero mean-reversion parameter produces non-usable parameters in the periods 

of market high volatility. Therefore, mean-reversion and convergence to the steady state must be 

incorporated into the interest rate model. This is also consistent with the empirical evidence of 

interest rate historical behavior. 

(iii) A standard approach to model a mean-reversion process is to estimate a long-term trend using HP 

filter and estimate speed of convergence to the long-term trend using simple regression analysis. 

(iv) Due to low accuracy of daily data, daily frequency produces non-robust parameter estimates. To 

improve robustness of the results, the daily data is aggregated into a lower frequency (e.g. monthly) 

data, which is used in parameter estimation.  

Based on the review of the historical data, the following modelling approach and modelling parameters 

were selected: 

1. xx 
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Appendix I Technical Comments and Modelling Notes 
  

  

This section presents technical notes which provide a more in-depth insight into the interest rate options 

modelling. 

I.1 Technical Comments 

In this section we summarize the technical problems that we encountered while developing and testing the 

ac.SRM tools. 

► Zero transition probabilities. This case may be present whenever the model drift parameter is 

material compared to the model volatility parameter (an example when we observed the problem 

is 𝜗 = 2% and 𝜎 = 0.1%). This problem is typical for Hull-White models with variable drift as in 

certain periods of time the estimated drift parameter may be material. The problem is typically 

present on the boundary of the set of states. For example, if 𝑟𝑛 is the maximum of the discrete set 

of states and drift parameter is a large positive number compared to the volatility parameter, then 

the process moves outside the discrete set of states and the probability of each state in the set 

(estimated based on Normal distribution) is close to a numerically zero value. 

To fix the problem for a state 𝑟𝑡 in which the problem was encountered (cumulative probability of 

child states equals numerically to zero), we assign uniform probabilities to all child nodes with states 

greater or equal than 𝑟𝑡, if drift is positive and to all child nodes with states less or equal than 𝑟𝑡, if 
drift is negative.  

► Failure of contraction mapping to converge. This case may be present in state 𝑟𝑡 whenever 𝑟𝑡 +
𝜗𝑡𝑑𝑡 is greater (smaller) than the maximum (minimum) state in the discrete set of states. If this 

problem is encountered, the adjusted transition probabilities assign probability one to the largest 

(smallest) state in the discrete set of states. 

The above points are illustrated by the following example. Suppose that in the example from Appendix G.3, 

the volatility is overridden by a low volatility value 𝜎 = 0.05%. Then the distribution over the tree nodes is 

estimated as follows: 

Exhibit I.1 Interest rate tree with low volatility parameter 
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In multiple periods the set of states consist of a single state, which illustrates that at lower volatility values 

the interest rate process is close to a deterministic process. The theoretical process will generally deviate 

from the single state and the state probability will be close to zero. The numeric procedure needs to identify 

those boundary conditions and reassign the probability to one. The transition probability adjustment 

algorithm based on the contraction mapping also needs to identify that the transition probabilities cannot 

be readjusted so that to match the theoretical mean value. Therefore, the algorithm does not converge and 

a unit probability must be assigned to the largest (or lowest) state in the set of discrete states. 

I.2 Modelling notes 

This section lists assumptions used in the ac.SRM tool implementation. 

► Function inputs for transition probabilities. Transition probabilities are modelled using two 

objects: (i) object that models transition probabilities of the one-dimensional states of the process 

and (ii) object that models the transition probabilities of the process mode. Both evolution of the 

state and evolution of the mode are described by four numeric values: time 𝑡, action (denoted as 𝑦 

for states and 𝑎 for modes), state  or mode in period 𝑡 (denoted respectively as 𝑟𝑡 or 𝑚𝑡) and state  

or mode in period 𝑡 + 1 (denoted respectively as 𝑟𝑡+1 or 𝑚𝑡+1). 

The interest rate process is a special case of a stochastic process with one-dimensional continuous 

state and a discrete set of modes and mode actions. The process has a blank set of state actions 
{𝑦}; two mode actions (𝑎 = 0 corresponding to not exercising the option and 𝑎 = 1 corresponding 

to exercising the option), and two modes (𝑚 = 0 corresponding to the option not being exercised 

and 𝑚 = 1 corresponding to the option being exercised). The transition probabilities of an interest 

rate process modes are described by the following mapping (same for each process48):  

{
 

 (𝑎 = 0) ⇒ {
𝑃𝑟{(𝑚𝑡 = 0) ⇒ (𝑚𝑡+1 = 0)} = 1

𝑃𝑟{(𝑚𝑡 = 1) ⇒ (𝑚𝑡+1 = 1)} = 1

(𝑎 = 1) ⇒ {
𝑃𝑟{(𝑚𝑡 = 0) ⇒ (𝑚𝑡+1 = 1)} = 1

𝑃𝑟{(𝑚𝑡 = 1) ⇒ (𝑚𝑡+1 = 1)} = 1

 

The transition probabilities of the state are described by default by a function 

𝑝(𝑡, 𝑦, 𝑟𝑡 , 𝑟𝑡+1) =
1

√2𝜋𝜎(𝑟𝑡)
× 𝑒

−
(𝑟𝑡+1−𝑟𝑡−𝜇(𝑡,𝑟𝑡))

2

2𝜎2(𝑟𝑡)  

► Transition probability object format. Transition probabilities can alternatively be modelled as a 

composition of function and mapping objects. This input format is applied for example when the 

transition probabilities are modelled for a trinomial tree, where the up, middle, and down 

movements of the process are modelled by a respective mapping object. 

► Objective and discount functions. Objective function in the generic stochastic model is assumed 

to be a function of the following parameters: 

𝑓(𝑡, 𝑎, 𝑦,𝑚, 𝑟) 

where 𝑡 is time, 𝑎 is mode action, 𝑦 is state action, 𝑚 is mode state, and 𝑟 is action state.49 The 

function 𝑓(𝑇, 𝑎, 𝑦,𝑚, 𝑟) also models the process terminal function. In the case of the interest rate 

process, the function is estimated as follows: 

► If 𝑚 = 1 then the option was exercised, and the value of the objective function is zero; 

                                                      

48 For a general stochastic process implemented in the tool the transition probabilities of process modes are always assumed to be 
static (not dependent on time variable). 

49 Note that the framework can be applied to model controlled stochastic processes with the state actions (not just mode actions). 
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► If 𝑚 = 0 and 𝑎 = 1 then the option is exercised, and the value of the function equals the bond 

redemption value; 

► If 𝑚 = 0 and 𝑎 = 0 then the option is not exercised, and the value of the function equals the 

cash flow paid by the bond in period 𝑡. 

In the case of the call option, the borrower minimizes the cost of financing and therefore all cash 

flows described above are assigned a negative value. In the case of the put option, the value of the 

bond is maximized, and the cash flows are estimated with the positive sign. 

The discount function is modelled as a function of the following parameters: 

𝐷(𝑡, 𝑟) 

Discount depends only on the process state but not the process mode state. Discounts are 

estimated based on the zero-coupon bond prices described in Sections 2.2 or 2.3  
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