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Abstract

Essays on Matching:

N-Lateral Matching with K Decisions

and

Matching with Coordination Frictions

Ph.D. Thesis (2005) by

Konstantin Rybakov

Department of Economics

University of Toronto

The thesis consists of three essays on matching. In Chapter 2, I introduce

an N -lateral K-decision matching model in which a matched group of N (one

from each class) must simultaneously choose one of K decisions. For any

decision, the surplus generated by a group of matched individuals is linear

in the individuals’ types. In each of the N classes, I assume that (i) there is

a continuum of agents, (ii) the agents are endowed with multi-dimensional

types, and (iii) the distribution of the types has a continuous density function.

In this case, I show that the equilibrium of the model exists and that it can be

constructed by solving an associated convex minimization problem. I provide

easily verifiable conditions for the uniqueness of the equilibrium.

In section 3.2 of Chapter 3, I consider a bilateral K-decision matching

model in which agents are endowed with one-dimensional types and, in con-

trast to Chapter 2, the surplus generated in a match may be non-linear. I

ii



provide sufficient conditions under which equilibrium matching is positive

assortative. In section 3.4 of Chapter 3, I propose a bilateral stochastic K-

decision model in which the utility of each matched individual is a sum of a

deterministic component, a match transfer, and an idiosyncratic component.

I provide general sufficient conditions for the existence and uniqueness of the

equilibrium of the model. The proof of equilibrium existence is constructive.

In chapter 4, I consider a matching model that describes a matching

process with coordination frictions in the labor market. In the literature, a

standard way to introduce coordination frictions is to describe the market

equilibrium as a symmetric equilibrium of a Bayesian game in which workers

apply simultaneously to firms and payoffs of the workers at each firm are

determined by the Vickrey mechanism. I extend the analysis of the model

to the case in which the workers are endowed with multi-dimensional types

and there are multiple job positions at each firm. I provide conditions under

which the construction of a symmetric equilibrium of the Bayesian game is

equivalent to the construction of a solution of a planner’s convex constrained

optimization problem.
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Chapter 1

Introduction

A matching model is a fundamental analytical tool in the description, de-

sign, and empirical evaluation of competitive markets. A matching model is

typically applied to the labor, marriage, or housing markets. For example, a

marriage market can be modelled as a set of men and women characterized

by their types. Men and women are endowed with preferences over the types

of the opposite sex and a reserve value of staying unmatched. The following

questions are analyzed within the framework of a matching model.

i Does (properly defined) equilibrium of the model exist?

ii What is the structure of the set of equilibria of the matching model?

iii Is there an algorithmic procedure that constructs an equilibrium of the

model?

iv What are the incentive properties of the equilibrium of the model?

There are many areas of study in which a matching model is either an-

alyzed directly or as a modelling block of a larger model. As you model

different markets you may have to make different assumptions about the

matching model that describes the market. For example, you need to choose

a matching technology. It is typically one of the following.

1



CHAPTER 1. INTRODUCTION 2

1. Random matching. There is no centralized market and people meet

randomly in the economy. Each time they meet they have to decide

whether to match or not. The model is referred to as a random match-

ing model.

2. A single centralized market. In this market you observe and can make

an offer to any agent of the opposite type. The model is referred to as

a matching model without coordination frictions.

3. Several centralized markets. In this case an agent first chooses which

market to enter and then he can make an offer to any agent of the

opposite type who entered the same market. Matches between agents

who entered different markets are not feasible. The model is referred

to as a matching model with coordination frictions.

In a matching model you also need to assume whether the utility of an

agent in a match can be transferred to his partner or not. So a matching

market can be modelled as having either

1. transferrable utility

2. or non-transferrable or partially transferrable utility.

Finally, the matching model can be either

1. static (one-period) or

2. dynamic (multi-period).

Varying the combinations of these three types of assumptions may vary

analytical tools required to analyze the resulting matching model.
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My thesis consists of three pieces. In Chapter 2 I introduce an N-lateral

K-decision model which is a static model with transferrable utility and no

coordination frictions. In contrast to the previous literature in which indi-

viduals from two classes are matched and matches depend on the types of

agents, I consider the model in which (1) individuals from N (where N is an

arbitrary finite number) classes are matched in groups (each group contains

one agent from each class) and (2) matches depend on both the types of indi-

viduals and the decisions made in the matches. In common with the standard

matching model, I assume that any match generates some surplus which is

allocated among the matched agents. In my model, the surplus generated in

a match is linear in the types of the matched agent for any given decision.

For this form of the surplus function the transfers in each match are deter-

mined only by the decision made in the match. I show that, under certain

conditions, the equilibrium exists and is unique, thus extending results from

the bilateral matching literature to a multi-lateral model with decisions. I

then discuss how, even in the case of bilateral matching models, the model

introduced here can address interesting economic questions that could not

be addressed using the bilateral models in the previous literature. For ex-

ample, how a redistribution of income between males and females affects the

equilibrium matches and the equilibrium production of public good in the

families. In another application I introduce and solve analytically a model

in which matches depend on the agents’ choices of education level and age

to marry. I use the analytical solution to give an example of a comparative

statics exercise. I describe how a change in the cost of education affects the

matches in the market and the decisions made by the families. This appli-

cation illustrates also the role of complementarity between male and female

choices in the resulting equilibrium matches in the marriage market.
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In Chapter 3, I extend the N-lateral K-decision matching model in two

directions by relaxing some of the restrictions of the model when N = 2.

In each extension of the bilateral model, I consider a bilateral matching

model with K decisions. In the first extension of the bilateral model, the

surplus generated in a match has a more general form than that considered

in the first essay. I derive some sufficient conditions and some necessary

conditions under which there exists an equilibrium matching which is positive

assortative. Specifically, I consider a matching model in which there are two

classes of agents, the types of the agents are one-dimensional, and the surplus

generated in a match has a general form as a function of the types of the

agents and the decision made in the match (in particular, it may be non-

separable in the types of the agents). I show that if (1) for any decision

the types of the agents are complementary to each other and (2) the type of

an agent is complementary to the decisions made in the match, then there

exists an equilibrium matching that is positive assortative. In the second

extension of the bilateral model, the utility of an agent in a match has a

more general form than that considered in the first essay. Specifically, the

utility of an agent in a match depends on his type, the type of his partner,

decision made in the match, and some random component. I show that,

under certain conditions, the equilibrium exists and is unique and I discuss

how the equilibrium can be constructed numerically.

In Chapter 4 I introduce a bilateral static matching model with trans-

ferrable utility and coordination frictions. The model that I analyze extends

previous bilateral matching models with coordination frictions by assum-

ing a more general form of heterogeneity of agents. I consider two solution

concepts of the model: (1) an optimal solution of a planner’s optimization

problem and (2) a symmetric equilibrium of a Bayesian game. I show that
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the set of symmetric equilibria of the Bayesian game coincides with the set of

solutions of the first-order Kuhn-Tucker conditions of the optimization prob-

lem. In particular, it follows from the result that the optimal solution of the

optimization problem is a symmetric equilibrium of an associated Bayesian

game. The Bayesian game interpretation of the model offers two explana-

tions of frictions in the market. The frictions arise in the market because

(1) the agents have imperfect information (each agent observes only his own

type) and (2) the agents fail to coordinate their choices (agents use symmet-

ric strategies). I show that, under certain conditions, the objective function

of the planner’s problem is concave so that the symmetric equilibrium of the

associated Bayesian game can be constructed numerically using standard

convex optimization algorithms.



Chapter 2

N-Lateral K-Decision Matching
Model

2.1 Introduction

A one-to-one bilateral matching model describes the way the agents from two

classes (for example, buyers and sellers) are matched to each other in such

a way that a match consists of one individual from each class (so that for

example, one buyer is matched with one seller). Stability has been proposed

as the property to be satisfied in any reasonable matching. There always

exists a stable matching in a one-to-one bilateral matching model and a

stable matching can be constructed by a variety of algorithms proposed in

the literature. The one-to-one bilateral matching model and the concept of

stability can be naturally extended to a one-to-...-one N -lateral matching

model in which there are N classes and a match consists of one individual

from each class. In general, however, the set of stable matchings may be

empty in the N -lateral matching model. This partially explains why there

are few results for these models despite the fact that N -lateral matching

models describe many interesting economic situations.

One natural example described by a one-to-...-one N -lateral matching

6



CHAPTER 2. N-LATERAL K-DECISION MATCHING MODEL 7

model is the market that consists of three classes of agents: consumers,

workers, and firms. The agents are matched in groups of three: one consumer,

one worker, one firm. The group makes a decision about which of a finite

number of goods to produce.

I propose an N -lateral K-decision model in which groups of N people

are matched. When matched, they must choose simultaneously one of a

finite number of decisions. For any given decision, the surplus function is

linear. The surplus generated in a match is a maximum of such decision

dependent surpluses. For convenience, I denote the N -lateral K-decision

matching model with this form of the surplus function as MK
N .

In the case that, in each of the N classes of agents, there is a continuum

of agents, each agent is endowed with a multidimensional type, and the

distribution of the types of agents has a continuous density function, I show

that the model MK
N has the following properties.1

(i) There always exists an equilibrium of the model. Sufficient easily verifi-

able conditions can be provided for the uniqueness of the equilibrium.

(ii) The equilibrium can be constructed numerically by solving an associated

convex minimization problem.2

A variety of matching markets can be naturally modelled by MK
N . Prop-

erties (i) and (ii) allow us to use the model to simulate numerically, and do

1I also impose a restriction on the coefficients of the surplus function.
2A standard way to construct a stable matching in a bilateral matching problem is

to represent it as a linear optimization problem and solve it numerically applying, for
example, an auction algorithm (see Roth and Sotomayor, (1989) [30]). In this chapter,
I associate with MK

N an optimal set partition problem. Each set of the agents’ types is
partitioned into K + 1 subsets. One subset of the partition corresponds to the subset of
types of unmatched agents and each of the other k = 1 . . .K subsets corresponds to the set
of the types of agents who make decision k = 1 . . .K when matched (some of the subsets
may be empty). The optimal partition generates naturally the stable matches of groups
of agents. The agents from different classes who make the same decision are matched
together in groups.
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comparative statics of the matching markets.

Even in the special case that N = 2, my model offers an alternative way

of thinking about how people match and, by extension, an alternative way of

defining and constructing the equilibrium in bilateral matching models. This

alternative representation of the matching model can provide more insights

about how people match.

For example, consider the N = 2 lateral, K = 2 decision model of the

marriage market in which males are matched with females. In the first appli-

cation, an agent’s type is interpreted as income and a decision is a quantity

of public good produced within a family3. This application (discussed in Sec-

tion 2.4.1) can address the question of how redistribution of income between

males and females affects the quantity of the public good. It has been shown

in the literature ([3], [4], [31], [37]) that redistribution of income within a

family has no effect on the quantity of the public good produced by the

family. However, this literature assumes that redistribution of income does

not affect how people match in the marriage market. A simple example,

described in this chapter, illustrates that redistribution of income typically

affects how people match and, therefore, affects the total quantity of public

good produced by families. Since the distribution of income is not neutral

in my model, I derive the distributions of income that generate the highest

and the lowest total quantity of the public good.

In the second application, an agent’s type is interpreted as ability or

taste4. A decision is interpreted as the education level and age of marriage

of each partner. This application illustrates the following points. First, it

3More specifically, it can be interpreted, for example, as the number of kids produced
within a family.

4The difference in the distributions of types between males and females may be either
a result of actual physical differences between the two genders or, for example, a result of
specific social norms in the society.
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provides some intuition on how the existence of complementarity5 among

male and female choices affects the matches and which decisions are made

in equilibrium. Second, some interesting comparative static exercises can be

done using the model that may explain how a change in the cost of education

for females affects the education and age of each partner in a match.

2.2 Literature

In this section, I discuss some known results of the bilateral matching liter-

ature.

In a standard bilateral matching model with transferrable utility and a

finite number of agents, individuals from two different classes, say males and

females, are matched in a one-to-one fashion. Let’s index males with i ∈ I

and females with j ∈ J . If a male i and a female j are matched, they

generate some surplus uij. Matching is defined as (i) a one-to-one matching

function m : I → J ∪ ∅ that describes the way the agents match (m(i) = ∅

is interpreted as male i stays unmatched), and (ii) transfer functions, pi
1

and pj
2, that correspond to each agent to a transfer that the agent obtains

(pi
1 + p

m(i)
2 = ui,m(i)). Equilibrium of the model is defined as a matching

function m(·) and transfer functions pi
1 and pj

2 such that some stability con-

ditions hold. (Matching is stable if (i) the sum of transfers of any two matched

agents equals the surplus generated in the match and (ii) the sum of transfers

of any two arbitrary agents is greater or equal to the surplus generated in

the match.) Equilibrium always exists in a bilateral matching model (for-

mal definitions and results can be found, for example, in Roth, Sotomayor,

(1989) [30]).

5Complementarity among choices is a restriction on the surplus function and is defined
formally in Section 2.4.2
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If there is a continuum of individuals, then they can not be indexed as

in the previous model. Instead, it is assumed that each male and female

is endowed with a type denoted by x1 ∈ X1 and x2 ∈ X2 and the mass of

males and females of a given type is described by distributions µ1 and µ2

correspondingly. The surplus generated by a matched pair of a male of type

x1 and a female of type x2 is a function of the types of the individuals denoted

by u(x1, x2). Matching is defined as (i) a matching function, m : X1 → X2∪∅

that describes the way the agents match (m(x1) = ∅ is interpreted as a male of

type x1 stays unmatched) and satisfies some mass balance condition6 (which

is a continuum analogue of the one-to-one mapping condition in the finite

case), and (ii) transfer functions, p1(x1) and p2(x2), that corresponds to each

type a transfer that an agent of a given type obtains (p1(x1) + p2(m(x1)) =

u(x1, m(x1))).

If the types x1 and x2 are one-dimensional (xn ∈ R), then agents can

be ordered with respect to their types. Becker, (1973) [2] shows that under

certain conditions the equilibrium matching is positive assortative 7.

When the types of the agents are multi-dimensional, a closed-form solu-

tion to the matching problem typically does not exist 8. In this case, the

equilibrium of the model can be constructed numerically, for example, by

an auction algorithm9. The algorithm is a procedure, which is very similar

6Formally, the mass balance condition is described as follows. For any set of female
types E, the set of male types that are matched with some type in E has the same measure
as E.

7Matching is positive assortative if the matching function from the set of male types
into the set of female types is non-decreasing.

8An exception to this is a linear quadratic matching model in which there is a contin-
uum of agents endowed with multi-dimensional types, the surplus function is quadratic
u(x1, x2) = xT

1 Ux2, and the distribution of types in each class is a multi-dimensional
normal distribution. The surplus maximizing matching can be shown to be linear,
x2 = m0 + Mx1, and explicit expressions for m0 and M can be derived.

9For the description of auction algorithms see Roth, Stomayor (1989) [30] or Bertsekas
(1989) [6]. The algorithm is applicable only if the number of agents’ types is finite.
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to an ascending bid auction. For some special forms of the surplus function

the equilibrium matching can be described by a system of partial differential

equations (see, for example, [11]).

In general, the equilibrium matching function m(·) may not exist. To

obtain existence of the equilibrium matching a more general definition of

matching is used in the literature. In the definition, matching is described

by (i) a measure µ defined on the direct product of the sets of agents’ types

(µ(A × B) denotes the mass of matches of a male and a female in which

the male’s type belongs to A and the female’s type belongs to B) and (ii)

transfers of the matched individuals p1x1 and p2x2. Gretsky, Ostroy, Zame,

(1999) [14] show that equilibrium exists and provide sufficient conditions for

the uniqueness of the equilibrium of the model (the equilibrium is generically

unique). These conditions, however, are not easily verifiable in practice.

In the cited literature, agents do not make any decisions and the sur-

plus function depends only on the types of the agents. Cole, Malaith, and

Postlewaite ([8]) analyze a bilateral matching model in which agents from

each side of the market are endowed with one-dimensional types and choose

from among a continuum of one-dimensional investment decisions before they

match. The investment decisions made by one side of the market are com-

plementary to those made by the other side of the market. When matched,

each pair of agents bargain over the division of the surplus generated. The

assumptions guarantee assortative matching and allow the authors to focus

on conditions that prevent the hold-up problem. The restrictive assumptions

that the authors make narrows the number of applications of their model. In

particular, the model can not be used in the applications and can not address

comparative static questions that I discuss in this chapter. By contrast, I

analyze an N-lateral, K-decision matching model in which agents from each
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side of the market are endowed with multi-dimensional types and choose

from among a finite number of multi-dimensional investment decisions. The

decision is made at the same time as agents match. Alternatively, as in the

hedonic pricing literature (see, for example, [28]), I may assume that agents

make decisions before they match and that agents have rational expectations

about the transfers they obtain as a function of their decision.

2.3 Matching Model

In this section, I formally describe the matching model MK
N and define the

equilibrium of the model.

2.3.1 Model Set-Up

There are N classes of agents and there is a continuum of agents in each

class. Each agent is endowed with a multi-dimensional type. The type xn of

an agent from a class n is an element of the set Xn = Rηn . Let µn denote

the distribution of types of the agents in class n. The distributions µn are

assumed to have a continuous density function10, denoted by fn(xn).

If a group of N agents, one from each class, match together they generate

a surplus

u (x1, . . . xN) = max
k∈K

(
N∑

n=1

ak
nxn + ak

0

)
(2.3.1)

where xn are the types of the agents in the group, K = {0, 1, . . . , K},

ak
n ∈ Rηn are some vectors of coefficients, ak

0 are some scalars, and ak
nxn =∑ηn

j=1 ak,j
n xj

n. The set K is interpreted as the set of decisions so that if a

10Though it may be true that a continuous density is not required to prove the existence
of an equilibrium when there is a continuum of agents, equilibrium may not exist when
continuity fails and there is a finite number of agents.
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matched group of N people chooses a decision k from the set K they gener-

ate the linear surplus

uk (x1, . . . xN) =
N∑

n=1

ak
nxn + ak

0 (2.3.2)

When a group of agents match they choose a decision k that generates the

highest surplus over all decision dependent surpluses uk. Decision k = 0 is

interpreted as a decision to stay unmatched. In this case the agent of type

xn from class n in the matched group obtains his reserve value

rn(xn) = a0
nxn + r0

n (2.3.3)

where r0
n are some constants (

∑
n r0

n = a0
0). I show in section 2.3.2 that if the

functions uk(x1, . . . , xN) are linear then in equilibrium each individual cares

only about the decision made by the matched group of agents but not about

the types of the other agents in the group 11.

The way the agents are matched is described by a vector of functions

m = (m2(·), . . . ,mN(·)), where mn : X1 → Xn ∪ ∅ (I interpret mn(x1) = ∅

as an agent of type x1 stays unmatched). The vector of functions m =

(m2(·), . . . ,mN(·)) satisfies the following two conditions.

1. If mn(x1) = ∅ for some n then

mn(x1) = ∅ (2.3.4)

for any n

2. For each n

µn(E) = µ1(m
−1
n (E)) (2.3.5)

for any E ∈ Xn measurable with respect to µn.

11This is true in a more general case when the functions uk(x1, . . . , xN ) are separable
in agents types.
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I note that each group of matched agents contains exactly one agent from

each class. The first condition guarantees that if mn(x1) = ∅ for any n,

then type x1 agents are unmatched; otherwise, type x1 agents are matched

with agents of types (m2(x1), . . . ,mN(x1)). The second condition is a mass

balance condition12.

2.3.2 Definition of Equilibrium

If a group of agents with types (x1, . . . , xN) is matched together and chooses

decision k, then the surplus they generate, described in equation 2.3.2, is

allocated among the agents in such a way that an agent of type xn obtains

a portion of surplus, denoted by pk
n (xn). I assume that utility equals the

portion received. I restrict13 to allocations for which the portion of the

surplus received by agents of type xn is of the form

pk
n (xn) = ak

nxn + pk
n,0 (2.3.6)

where p0 =
{
pk

n,0 : n = 1, . . . , N, k = 0, . . . , K
}

is an array of unknown trans-

fer parameters and
∑

n pk
n,0 = ak

0. If k = 0 then I assume that

p0
n,0 = r0

n (2.3.7)

That is, the transfer of an unmatched agent equals to the constant parameter

in his reserve value function. With this form of surplus allocation, an increase

in an agent’s type generates an increase in the portion of the surplus received

by the agent that is equal to the agent’s marginal contribution to the surplus

12The conditions 2.3.4 and 2.3.5 do not imply that matching functions m2(·), . . . ,mN (·)
are one-to-one in a measure theoretic way. That is, there may exist types x1 ∈ X1 and
x′1 ∈ X1 such that xn = mn(x1) = mn(x′1) for some n. This is possible because there is
a continuum of agents of each type. Therefore, it is feasible that some agents of type xn

are matched with agents of type x1 and some with agents of type x′1.
13As I show later in this section there is no loss of generality in this restriction. Any

stable matching in this model corresponds to some equilibrium defined below.
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generated in a match. The transfers pk
n,0 determine only how the constant

term ak
0 is divided in a match if decision k is made.

Let pn,0 =
{
pk

n,0 : k = 1 . . . K
}

be the vector of transfers. The upper

demand set D
k

n(pn,0) ∈ Xn for decision k in set Xn is defined as

D
k

n(pn,0) =
{
xn ∈ Xn : pk

n(xn) ≥ pl
n(xn) for any l = 0 . . . K

}
(2.3.8)

The lower demand set Dk
n(pn,0) ∈ Xn for decision k in set Xn is defined as

Dk
n(pn,0) =

{
xn ∈ Xn : pk

n(xn) > pl
n(xn) for any l = 0 . . . K

}
(2.3.9)

and a demand set Dk
n(pn,0) ∈ Xn for decision k in set Xn is any set such that

Dk
n(pn,0) ⊆ Dk

n(pn,0) ⊆ D
k

n(pn,0) (2.3.10)

The set D0
n(pn,0) is the subset of types, such that an agent from class n of

type xn ∈ D0
n stays unmatched and obtains his reserve value rn(xn).

The demand sets D
k

n(pn,0) and Dk
n(pn,0) that correspond to a decision k

is a set of vectors that are solutions to a linear system of inequalities. Such

sets are called convex polyhedrons. In particular, the sets are convex and

connected.

Now I define the equilibrium of the model14.

Definition 2.3.1 A matrix of transfers pk
n,0 and corresponding demand sets

Dk
n (pn,0), defined by equations 2.3.8-2.3.10, describe an equilibrium of MK

N

if:

1. For each n, the collection of the sets {Dk
n}k=0,...,K generates a partition

of the set Xn. That is,

Xn = tK
k=0D

k
n and µn(Dk

n ∩Dk̃
n) = 0 (2.3.11)

for any k 6= k̃.

14An alternative equivalent definition is given in section 2.6.5.
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2. For each k 6= 0, the measure of the agents that prefer decision k is the

same in each set Xn. That is, for each k = 1, . . . , K

µn

(
Dk

n

)
= µñ

(
Dk

ñ

)
(2.3.12)

for any n, ñ.

3. The sum of transfers to the agents in a matched group equals the con-

stant term in the surplus generated by the group. For each k = 1, . . . , K

∑
n

pk
n,0 = ak

0 (2.3.13)

Condition 2.3.12 is a mass balance condition. It ensures that an equal

mass of agents from each class prefer any given decision k = 1, .., K. Con-

dition 2.3.13 is a surplus balance condition. It ensures that the sum of the

surplus portions allocated to each agent in a match equals the surplus gen-

erated in the match.

An equilibrium generates matched groups of N individuals, one from

each class. All agents in a match choose a common decision k. Each match

consists of one agent from each class chosen arbitrary from a set of agents

who choose a common decision k.

In the next proposition I show that equilibrium defined in 2.3.1 generates

a stable matching. But, first, I give the definition of a stable matching.

Definition 2.3.2 A matching m = (m2(x1), . . . ,mN(x1)) is stable if there

exist transfers pn(xn), n = 1, . . . , N such that for any vector of types (x1, . . . , xN)

p1(x1) + p2(x2) + . . . + pN(xN) ≥ u(x1, . . . , xN) (2.3.14)

and for any matched group (x1, m2(x1), . . . mN(x1))

p1(x1) + p2(m2(x1)) + . . . + pN(mN(x1)) = u(x1, . . . , xN) (2.3.15)
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The following statement shows the relationship between stable matching

and equilibrium of the model

Proposition 2.3.1

(i) Equilibrium matching and transfers generate a stable matching15.

(ii) Any stable matching is generated by some equilibrium matching and

transfers.

A corollary of the proposition is that there does not exist a stable match-

ing in which the transfer functions are not linear. Therefore, constraining

the transfers to the functional form 2.3.6 does not reduce the set of stable

matchings of the model.

2.3.3 Optimization Problem

In a standard model of supply and demand, equilibrium can be constructed

as a solution of an associated planner’s optimization problem. Let’s consider,

for example, a market for a homogeneous good in which inverse demand and

supply functions are pd(Q) and ps(Q), where Q is the quantity of the good.

The planner chooses Q so as to maximize the social surplus function which is

defined as W (Q) =
∫ Q

0

[
pd(Q̃)− ps(Q̃

]
dQ̃. The first-order condition to the

planner’s optimization problem is pd(Q̂) = ps(Q̂). The surplus maximizing

values of Q̂ and pd(Q̂) are interpreted as the equilibrium quantity and price in

the model. The condition pd(Q̂) = ps(Q̂) is interpreted as demand equals sup-

ply at the equilibrium price. In this chapter, I also construct an equilibrium

of the model by finding a solution of an associated planner’s optimization

problem. There is no analogue, however, between MK
N and the simple model

15Formally, this means that the set of matches and the transfers to the agents in the
equilibrium are the same as the set of matches and the transfers in the stable matching.
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of a commodity market described above. In particular, I can not associate

directly the equilibrium of the model with the first-order conditions of the

planner’s problem. Instead, I construct demand sets and transfers by solving

a planner’s problem that involves demand sets, transfers, and mass balance

condition. I begin by introducing the optimization problem in which the

planner finds matching functions m2(·), . . . ,mN(·) that maximize aggregate

surplus. I then introduce the planner’s problem in which the planner finds

the optimal partition of the sets of types among all partitions that satisfy

mass balance condition. The dual to this problem is the one in which the

planner finds the transfers that give rise to the demand sets which satisfy

mass balance condition. Finally, I describe in Theorem 2.3.1 the relationship

between the planner’s surplus maximization problem, the dual problem, and

the equilibrium of the model.

The planner’s natural surplus maximization problem is described as fol-

lows. Let, for any given matching functions (m2(·), mN(·)), the aggregate

surplus be defined as the sum of the reserve values of the unmatched agents

and the sum of surpluses of the matched groups of agents. The planner

chooses the matching functions that maximize the aggregate surplus.


maxm2(x1),...,mN (x1)

∫
X1\Π0

1
u (x1, m2(x1), . . . , mN(x1)) f1(x1)dx1

+
∑

n

∫
Π0

n
rn(xn)fn(xn)dxn

s.t.: for each n µn(E) = µ1(m
−1
n (E))

for any E ∈Xn measurable with respect to µn

(2.3.16)

where, for each n, the set Π0
n is the subset of the types of unmatched agents in

class n and the constraint in the planner’s problem is the stability condition

2.3.5 that any matching function must satisfy. Figure 2.3.1 illustrates a

matching between the types of males and females.
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Figure 2.3.1 There are two classes of agents who are endowed with two-dimensional

types. A sample distribution shows the distribution of the types in each class. Function

x2 = m2(x1) describes the matching between the types of the agents. The matching

function m(x1) satisfies mass balance condition 2.3.5 so that for an arbitrary set E ∈ X2

the number of the agents’ types that belong to the set E equals to the number of the

agents’ types in set X1 that belong to the set m−1(E) of types in ∈ X1 that is mapped

into E by m(x1).

Now I show that the surplus maximization problem can be equivalently

represented as a problem in which the planner chooses an optimal partition of

the sets of types among all the partitions that satisfy mass balance condition.

Matching functions m(·) = (m2(·), . . . ,mN(·)) generate a natural partition of

each set Xn into K+1 sets where each type in the set makes a given decision.

The partition of a set Xn is described as follows. The set Π0
n denotes those

types of agents xn for whom xn 6= mn(x1) for any x1. That is, the set Π0
n

consists of types of agents who remain unmatched. The set Πk
n consists of

those types of agents xn = mn(x1) for whom decision k = 1, ..., K generates
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the largest surplus conditional on the matching m(x1). That is,

ak
1m

−1
n (xn) +

N∑
i=2

ak
i mi(m

−1
n (xn)) + ak

0 ≥

al
1m

−1
n (xn) +

N∑
i=2

al
imi(m

−1
n (xn)) + al

0

for any l = 0, . . . , K. Note that the fact that the surplus function uk(·) is

separable in types implies that if two matchings generate a given partition

of the sets of types Πk
n, k = 0, ...K into decision sets, then the two matchings

generate the same total surplus.

Let Pn denote partition of set Xn into subsets Πk
n, k = 0, . . . , K so that

Xn =
(
tK

k=1Π
k
n

)
tΠ0

n. Let P = (P1, . . . ,PN) denote the vector of partitions. I

consider the following total surplus function that maps the set of all partitions

into the real line.

V (P) =
∑

k=1,...,K

[ ∑
n=1...N

∫
xn∈Πk

n

ak
nxnfn(xn)dxn + ak

0µ1(Π
k
1)

]
+

∑
n

∫
xn∈Π0

n

rn(xn)fn(xn)dxn (2.3.17)

The optimization problem can now be reformulated as follows. Find the

vector of partitions P that maximizes the following function
maxP V (P)

s.t. for each k µk
1(Π

k
1) = µk

n(Πk
n) for any n

(2.3.18)

In the optimization problem Πk
n, k = 1, . . . , K is a set of agents in Xn who

make decision k, when matched, and Π0
n is a set of unmatched agents in the

set Xn.

It is not clear how to solve for the optimal partitions of the sets16. Instead

16It is not clear, for example, how to differentiate function V (P) with respect to P.
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of solving optimization problem 2.3.18 directly I formulate the dual problem.

Let

Wn (pn,0) =
K∑

k=1

∫
Dk

n(pn,0)

[
ak

nxn + pk
n,0

]
fn(xn)dxn+∫

D0
n(pn,0)

[
a0

nxn + p0
n,0

]
fn(xn)dxn (2.3.19)

where for each n, (1) the sets Dk
n satisfy condition 2.3.10 for any k = 0, . . . , K

and (2) the collection of sets {Dk
n}k=0,...,K generates a partition of the set Xn.

That is, Xn = tK
k=0D

k
n and µn(Dk

n ∩Dk̃
n) = 0 for any k 6= k̃. Let also

W (p0) =
∑

n

Wn(pn,0) (2.3.20)

where p0 = (pn,0), n = 1 . . . N . The dual optimization problem is described

as follows. Find an array of values p0 that is a solution to the following

minimization problem.


minp0 W (p0)

s.t.
∑

n pk
n,0 = ak

0 for any k = 1, . . . , K
p0

n,0 = r0
n

(2.3.21)

A solution p0 to the problem 2.3.21 generates demand sets Dk
n, defined in

2.3.10, that partition the sets of types into the subsets of agents who choose

different decisions. In the following lemma I provide conditions under which

the equilibrium of the model exists and the demand sets that correspond to

the optimal array of transfers pk
n,0 generate the optimal partition of the sets

Xn.

Theorem 2.3.1 The following statements hold.
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(i) For any array of transfers p0 that satisfies the constraints of the problem

2.3.21 and for any partition vector P that satisfies the constraints of

the problem 2.3.18 the value of the dual objective function is greater

or equal to the value of the objective function of the optimal partition

problem, that is W (p0) ≥ V (P).

(ii) Suppose that Assumption 2.3.1 holds and in each class there is a con-

tinuum of agents endowed with multi-dimensional types and the distri-

bution of the types has a continuous density function. Then the optimal

array of transfers p̂0 generates the partition P(p̂0) of the sets Xn into

demand sets Dk
n, defined as in 2.3.10, such that W (p̂0) = V (P(p̂0)).

Partition P(p̂0) is a solution to the problem 2.3.18. The transfers p̂0

and the corresponding demand sets Dk
n describe the equilibrium of the

model.

(iii) If W (p̂0) > V (P̂), where p̂0 is a solution of the dual problem 2.3.21 and

P̂ is a solution of the primary problem 2.3.18 then the equilibrium of

the model does not exist.

Proof is in the Appendix. To summarize, the problem is modified so that

instead of looking for the optimal matching functions I look for the array of

transfers that generates an optimal partition of the sets Xn. The optimal

matching is constructed from the optimal partition as follows. If an agent

belongs to a set D0
n then he stays unmatched. For each decision k = 1, . . . , K

the agents that belong to the sets Dk
n, n = 1 . . . N, are matched to each other

in an arbitrary way. This can be illustrated by the following picture.
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Figure 2.3.2 There are two classes of agents who endowed with 2-dimensional type. An

array of optimal transfers p0 generates a partition of the set Xn of types of the agents into

the sets Dk
n such that µk

1(Dk
1 ) = µk

2(Dk
2 ). The optimal matching maps the agents’ types

from a set Dk
1 into the set Dk

2 for each k in an arbitrary way.

2.3.4 Properties of the Optimization Problem and Ex-
istence of the Equilibrium

In this section, I prove that the equilibrium of the model exists and show

how the equilibrium can be constructed numerically. First, I impose some

restrictions on the coefficients ak
n under which the objective function in op-

timization problem 2.3.21 is differentiable. Then I show in Proposition 2.3.2

that existence of equilibrium follows directly from the differentiability of the

objective function. In Theorem 2.3.2 I generalize Proposition 2.3.2 and show

that the equilibrium of the model exists for an arbitrary array of coeffi-

cients ak
n. I derive then the second derivative of the objective function of

the optimization problem 2.3.21. I use the second derivative to show that

the objective function is convex17 and, therefore, the problem 2.3.21 can be

solved by standard numerical methods.

17It can be shown that the objective function is convex under very general conditions.
In particular, convexity of the function can be proved in the cases when the function is
not differentiable and even in the cases when the equilibrium of the model does not exist.
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To derive the first and the second derivatives of the objective function

in the optimization problem 2.3.21 I impose the following restriction on the

coefficients ak
n.

Assumption 2.3.1 For each n,

ak
n 6= al

n (2.3.22)

for any k 6= l18.

Note that if Assumption 2.3.1 holds, then the set of types of agents who

are indifferent among several decisions has zero measure. Therefore, µn(D
k

n∩

Dk
n) = 0 and demand set Dk

n(pn,0) can be chosen, for example, as the upper

demand set19.

To show that the equilibrium of the model exists, I find the first derivative

of Wn (pn,0), defined in 2.3.19, with respect to pk
n,0. Note, first, that variable

pk
n,0 is present both in the integrands and the sets Dl

n (pn,0) , l = 0, . . . , K

over which the integrals is taken. First, I look at how each set Dl
n (pn,0)

is changing as pk
n,0 increases to pk

n,0 + ε, ε > 0. The change in the sets of

integration is illustrated in Figure 2.3.3.

Dk
n

Dl
n

Di
n

ε/|ak
n − al

n|

Figure 2.3.3 A change in demand set Dk
n and Dl

n, l 6= k, as the transfer pk
n,0 of decision

k in the set Xn increases by ε > 0. Each boundary of the set Dk
n with Dl

n shifts away

from Dk
n in a parallel fashion.

18The assumption is not so restrictive since the set of parameters that satisfies this
assumptions is dense in the original set of parameters Rη1 × ...×RηN .

19Assumption 2.3.1 also guarantees that demand sets change continuously with transfers.
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Let Γkl
n denote the boundary between the sets Dk

n and Dl
n :

Γkl
n =

{
xn ∈ Xn : pk

n (xn) = pl
n (xn) ,

pk
n (xn) ≥ pi

n (xn) for any i = 0, . . . , K
}

(2.3.23)

Let
∫

Γkl
n

h (xn) fn (xn) denote the surface integral of a function h (xn) over

the boundary Γkl
n in RMn space20. As pk

n,0 increases by ε, each boundary

Γkl
n , l = 1 . . . K of the sets Dk

n and Dl
n shifts away from the set Dk

n in a paral-

lel fashion (some boundaries Γkl
n can be empty sets). The distance between

the old and the new boundaries of the sets is 1

|ak
n−al

n|ε. Therefore, if I differ-

entiate function
∫

Dk
n(pn,0)

h (xn) fn(xn)dxn (note that the set of integration is

Dk
n (pn,0)) I obtain

∂

∂pk
n,0

∫
Dk

n(pn,0)

h (xn) fn(xn)dxn =
∑
i6=k

1

|ak
n − ai

n|

∫
Γki

n

h (xn) fn (xn)

for any continuous function h (xn). If, on the other hand, I differentiate func-

tion
∫

Dl
n(pn,0)

h (xn) fn(xn)dxn (note that the set of integration is Dl
n (pn,0)) I

obtain

∂

∂pk
n,0

∫
Dl

n(pn,0)

h (xn) fn(xn)dxn = − 1

|ak
n − al

n|

∫
Γkl

n

h (xn) fn (xn)

I can apply now the above arguments to find the first derivative of

Wn (pn,0). Note also that for each differentiated term
∫

Dl
n(pn,0)

[
al

nxn + pl
n,0

]
in Wn (pn,0) the derivative of the integrand with respect to pk

n,0 is one if l = k

and zero otherwise. Summing this all up I obtain

20For a formal definition of surface integrals see, for example, chapter 14 in ”Calculus
in Vector Spaces”, 1995 by Lawrence Corwin and Robert Szczarba.
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∂Wn

∂pk
n,0

=

∫
Dk

n(pn,0)

fn(xn)dxn+

+
∑

l

1

|ak
n − al

n|

∫
Γkl

n

pk
n (xn) fn (xn)−

∑
l

1

|ak
n − al

n|

∫
Γkl

n

pl
n (xn) fn (xn)

By definition, pk
n (xn) = pl

n (xn) on the boundary of any sets Dk
n and Dl

n so

that

∂Wn

∂pk
n,0

=

∫
Dk

n(pn,0)

fn(xn)dxn (2.3.24)

Existence of the equilibrium follows immediately from equation 2.3.24.

Proposition 2.3.2 Suppose that Assumption 2.3.1 holds. Suppose also that

p̂0 is a solution of the dual optimization problem 2.3.21, D
k

n(p̂n,0) are the

corresponding upper demand sets (defined in 2.3.8), and Dk
n(p̂n,0) = D

k

n(p̂n,0).

Then the transfers p̂0 and the corresponding demand sets Dk
n(p̂n,0) describe

the equilibrium of the model.

The proof follows immediately from the definition of the equilibrium. Con-

dition 2.3.11 of Definition 2.3.1 follows immediately from Assumption 2.3.1.

The surplus balance condition 2.3.13 is a constraint in the dual optimization

problem 2.3.21 and, therefore, it holds by construction of p̂0. Finally, mass

balance condition 2.3.12 is exactly the first order conditions 2.3.24 of the

optimization problem 2.3.21. The result can be generalized as follows.

Theorem 2.3.2 Equilibrium of MK
N exists for an arbitrary array of param-

eters {ak
n}.

Proof21 is in the Appendix. Next, I find the second derivative of Wn (pn,0).

Let
21Assumption that each distribution of the agents’ types has a continuous density func-

tion is essential in the proof. It is easy to construct examples with a finite number of
agents in each class in which the equilibrium of the model does not exist.
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τ kl
n =

1

|ak
n − al

n|

∫
Γkl

n

fn (xn) dxn ≥ 0 for k 6= l (2.3.25)

Lemma 2.3.1 The elements ωkl
n (pn,0) of the matrix of the second partial

cross derivatives of Wn (pn,0) with respect to pn,0 are described by the following

formula

ωkl
n (pn,0) =

∂2Wn

∂pk
n,0∂pl

n,0

=

{
−τ kl

n , if k 6= l∑
l 6=k τ kl

n , if k = l
(2.3.26)

Proof. As I have shown above ∂Wn

∂pk
n,0

=
∫

Dk
n(pn,0)

fn(xn)dxn. Taking the

partial cross derivative with respect to pl
n,0, applying the same argument as

I did for the first derivative, and keeping in mind that h (xn) ≡ 1, I obtain

∂2Wn

∂pk
n,0∂pl

n,0

= − 1

|ak
n − al

n|

∫
Γkl

n

fn (xn) = −τ kl
n if k 6= l

∂2Wn

∂pk
n,0∂pk

n,0

=
∑
l 6=k

1

|ak
n − al

n|

∫
Γkl

n

fn (xn) =
∑
l 6=k

τ kl
n .

Let Ωn(pn,0) = (ωkl
n ). The matrix of the second derivatives Ω(pn,0) has the

following properties. The elements on the main diagonal are non-negative,

the off-diagonal elements are non-positive, and the sum of the off-diagonal

elements in each row is smaller or equal in absolute value than the diagonal

element in this row. Any such matrix is positive or semi-positive definite

(see, for example, [5]). Therefore, the function Wn (pn,0) is convex.

Proposition 2.3.3 For each n the function Wn (pn,0) is a convex function

of pn,0.
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2.3.5 Uniqueness of the Equilibrium

In this section, I provide conditions under which the equilibrium of the model

MK
N is unique. In order to do comparative statics exercises, like I do in section

2.4, I need easily verifiable conditions for the uniqueness of the equilibrium

transfers to the agents. If p̃n,0 and p̂n,0 are two equilibrium transfer arrays

of decisions in class n then the function Wn(pn,0) is constant for any transfer

pt
n,0 = tp̃n,0 + (1− t)p̂n,0, t ∈ [0, 1] and, therefore, the vector p̂n,0 − p̃n,0 is an

eigenvector of the second derivative of Wn(pn,0) of the eigenvalue of zero. The

uniqueness of the transfers is related closely to the number of eigenvectors

that correspond to zero eigenvalue of Ωn(pn,0) for each n.

Eigenvectors of Ωn(pn,0) when Eigenvalue is Zero

In order to find the dimension of the space of optimal transfers I look at the

graph, associated with the matrix Ωn(pn,0). The graph describes formally the

link between the connectedness of set of types Xn (I introduce connectedness

later on page 31 in Definition 2.3.3) and the structure of the matrix Ωn(pn,0).

In order to do, so I start with giving some standard definitions from graph

theory much of which is quoted directly from ”Graphs & Digraphs”, 1996,

Mike Henning and Ed Palmer.

A graph G is a finite nonempty set of objects called vertices together with

a (possibly empty) set of unordered pairs of distinct vertices of G called edges.

The vertex set of G is denoted as V (G), while the edge set is denoted by E (G).

Vertices v1 and v2 are adjacent vertices if e = v1v2 is an edge of G. A graph G

with vertex set V (G) =
{
v1, . . . , vK

}
and edge set E (G) = {e1, . . . , em} can

also be described by means of matrices. An adjacency matrix A (G) =
[
akl
]

is defined as
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akl =

{
1, if vkvl ∈ E (G)
0, if vkvl /∈ E (G)

Two vertices vk and vl of the graph G are connected if there exists a

path (set of edges) that connects the vertices. Graph G is connected if every

two vertices of the graph are connected. The relation ’is connected to’ is an

equivalence relation on the vertex set of graph G. Each subgraph induced by

the vertices in a resulting equivalence class is called a component of G.

i apply this graph theoretical definitions in the analysis of the number

of eigenvectors that correspond to the eigenvalue of zero of Ωn(pn,0). Let

An (pn,0) = [aij
n ] be defined as

aij
n =

{
1, if ωij

n 6= 0
0, if ωij

n = 0

An (pn,0) is an adjacency matrix of some graph. Let Gn (pn,0) be the graph

associated with the adjacency matrix An (pn,0).

Let {Gn,i}i=1...η be the components of Gn(pn,0). Each component Gn,i cor-

responds to a subset of columns In,i ⊂ I in the matrix Ωn(pn,0), where

I = {1, 2, . . . , K} is the set of all columns. For convenience, I use the same

terminology for the columns and decisions as for the graph vertices. Thus, I

say that two columns (decisions) are adjacent in Ωn(pn,0) if the correspond-

ing two vertices are adjacent in the graph and two columns (decisions) are

connected in Ωn(pn,0) if the corresponding vertices are connected. Note that

two columns (decisions) k and l are adjacent if ωkl
n 6= 0 and connected22 if

k, l ∈ In,i for some i.

Consider the following vectors υn,i =
[
υl

n,i

]l=1...K
for each n and i

22If at transfers pn,0 decision k is taken by a zero measure of agents in class n then it
is not connected in Ωn(pn,0) to any other decision. In this case any off-diagonal element
ωkl

n = 0 in row k.
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υl
n,i =

{
1, if l ∈ In,i

0, if l /∈ In,i
(2.3.27)

Fix n and transfers pn,0. Let En(pn,0) denote the linear space spanned by

the eigenvectors of Ωn(pn,0) that correspond to the eigenvalue of zero. First,

I prove the following lemma.

Lemma 2.3.2 The vectors υn,i, i = 1 . . . η, defined in 2.3.27, are elements

of En(pn,0).

Proof is in the Appendix. The space of En(pn,0) is, by definition, the space

of solutions of the linear system Ωn(pn,0)υ = 0. I show next that the set of

vectors {υn,i}i=1...η forms a basis of En(pn,0).

Lemma 2.3.3 The vectors υn,i, i = 1 . . . η, defined in 2.3.27, form a basis

of the space En(pn,0).

Proof is in the Appendix. The following corollary follows immediately

from the proof of lemma 2.3.3.

Corollary 2.3.1 Let υ be an eigenvector of Ωn(pn,0) that corresponds to the

eigenvalue of zero (υ ∈ En(pn,0)). Then υk = υl for any connected columns

k and l of the matrix Ωn(pn,0).

Uniqueness

Let

K+
n (pn,0) =

{
k : µn

(
Dk

n

)
> 0 , given pn,0

}
(2.3.28)

be the set of decisions that are taken by a positive measure of agents in

set Xn given the vector of transfers pn,0. If pn,0 is an equilibrium transfer
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matrix then mass balance condition 2.3.12 implies that the set K+
n (pn,0) is

independent of n. Let

K+ (p0) = K+
n (pn,0) (2.3.29)

denote the set of decisions taken by a positive measure of agents in Xn for

any n.

First, I prove the following lemma.

Lemma 2.3.4 Suppose that p̃0 and p̂0 are two equilibrium transfer matrices

and k and l are two decisions that are connected in Ωn(p̃n,0) at transfers p̃n,0.

Then p̂k
n,0 − p̃k

n,0 = p̂l
n,0 − p̃l

n,0.

Proof is in the Appendix. Next I need the following definition.

Definition 2.3.3 Suppose that the measure µ has a continuous density func-

tion f (x). I say that set X is connected with respect to measure µ if there

does not exist a pair of disjoint sets A and B such that µ (A) > 0, µ (B) > 0,

and f (x) = 0 for any x ∈ X\ (A ∪B).

Lemma 2.3.5 Suppose that the measure µn has a continuous density func-

tion fn (x). If a set of agents types Y ∈ Xn is connected with respect to µn

and decisions k and l are such that µn(Y ∩ Dk
n) > 0 and µn(Y ∩ Dl

n) > 0,

where demand sets Dk
n and Dl

n are constructed for some transfer vector pn,0,

then decisions k and l are connected in Ωn (pn,0) at transfers pn,0.

Proof is in the Appendix. Now I am ready to formulate the main result

about the uniqueness of the equilibrium transfers.

Theorem 2.3.3 Suppose that Assumption 2.3.1 holds, there is a continuum

of agents endowed with multi-dimensional types in each class n, and for each
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n the distribution of types µn has a continuous density function fn (x). Then

the following statements are true.

(i) The set of partitions, generated by the set of solutions of the dual min-

imization problem 2.3.21, is a singleton.

(ii) Suppose that for some n, the set of types Xn is connected with respect

to µn. Also suppose that the transfers of decision k0 satisfy p̃k0
n,0 = p̂k0

n,0

for some decision k0 ∈ K+(p̂0). Then p̃k
n,0 = p̂k

n,0 for any k ∈ K+(p̂0).

(iii) For any class n, the vector of optimal transfers p̂n,0 is determined

uniquely if the set of types Xn is connected with respect to µn and a

positive measure of agents are unmatched in class n.

2.4 Applications

So far I have presented a theory of the general N -lateral, K-decision matching

model for which I have provided conditions for existence and uniqueness of

equilibrium. In this section, I give two application of the marriage market in

which the equilibrium of the model is described analytically.

In the first example, I show how redistribution of income affects total

production of public goods in the families.

In the second example, I describe the solution of the model analytically

in the case that matches between individuals are determined by their choice

of education level and age of marriage. I assume that there is some form of

complementarity among the choices. For some parameters, in equilibrium,

the types are partitioned into two sets, which can conveniently be interpreted

as a set of high types and a set of low types. For these parameters, high-

type individuals obtain a high level of education and decide to start their

families later in life and low-type individuals obtain a low level of education
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and decide to start their families earlier in life.23 The example illustrates

how complementarity among choices produces assortative matching in the

market.24 In principle, the analytical description of the equilibrium also

allows me to do various comparative static exercises. I provide one such

comparative static. I show how a change in the cost of education for females

affects transfers as well as the education and age of each partner in a match.

It is important to emphasize that these applications are illustrative. The

objective of the applications is to show how the theory can be applied to

explain selection in the market in which different types of individuals produce

different types of families. The selection determines the equilibrium matching

and family structures.

2.4.1 Redistribution of Income and Production of Pub-
lic Good in the Families

Let’s consider the following simple model. There are two classes, g ∈ {1, 2},

of individuals: males and females. A male type, x1 ∈ [0, 1], and a female

type, x2 ∈ [0, 1], is interpreted as the individual’s income. The distribution

of types is denoted by µ1 for males and by µ2 for females. A matched pair

chooses a decision which is an element of the set K = {0, 1, 2}. Decision

k ∈ {1, 2} is interpreted as the quantity of the public good produced in the

family. For example, it could be the number of kids produced in the family.

The surplus generated by a match between a male of type x1 and a female

23In general, other types of families may also be produced in equilibrium (a female with
high level of education may be matched with a male with low level of education, etc). A
particular matching structure depends on the parameters of the models. The described
matching is, in a sense, a ’representative’ matching.

24In the example, assortative matching means that a subset of high-type males is
matched to a subset of high-type females and a subset of low-type males is matched
to a subset of low-type females.
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of type x2 that produces k units of public good, is

u(x1, x2, k) = ak
1x1 + ak

2x2 + ak
0 (2.4.1)

I assume that

a2
1 > a1

1 a2
2 > a1

2 (2.4.2)

that is, the individuals of higher types have a higher valuation of the public

good. For simplicity, I also assume that (1) a1
1 = a1

2 = 0, (2) a1
0 = 0, a2

0 < 0

(the restriction implies that while the value of decision k = 2 increases faster

with the type of an agent than the value of k = 1 it also has a higher fixed

cost −a2
0.), and (3) a0

0 = −∞ (the last restriction implies that in equilibrium

there are no unmatched individuals).

Let p be the transfer from a male to his matched female if k = 2. If

k = 1 then both individuals in a match obtain zero utility. If two matched

individuals choose k = 2 then the male obtains utility u1 = a2
1x1− p and the

female obtains utility u2 = a2
2x2 + (a2

0 + p). The equilibrium of the model is

described in the figure below.

�

�

0 0

1 1

x1 x2

k̂ = 2

k̂ = 1

k̂ = 2

k̂ = 1

where x1 = p̂
a2
1

and x2 = −a2
0+p̂

a2
2

and the equilibrium transfer p̂ is found

from the condition µ1([0, x1) = µ2([0, x2). In the figure, the females of types

[0, x2] are matched to the males of types [0, x1] in any one-to-one fashion

and a matched pair chooses k = 1. The females of types [x2, 1] are matched

to the males of types [x1, 1] in any one-to-one fashion and a matched pair
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chooses k = 2. This matching function (in which low types are matched to

low types and high types are matched to high types) has a simple intuitive

explanation. The choice of decision k by an agent depends on the constant

part ak
0 and the value of the variable term ak

nxn that the agent obtains.

Decision k = 1 generates a higher constant part and a lower value of the

variable part. Therefore, the decision is chosen by low type individuals. The

reverse is true for decision k = 2.

Next I perform the following comparative static exercise. I change the

distribution of types in the following manner. Select any positive mass m of

female types x2 > x2 and decrease each of these income types by an amount

δ so that income becomes less than x2. At the same time, take the positive

mass m of males of types x1 > x1 and increase each of these income types

by δ. An example of this change in distributions is illustrated in the figure

below.

�

-

0 0

1 1

x1 x2

k̂ = 2

k̂ = 1

k̂ = 2

k̂ = 1

As the distributions of the types change, the measure of the set [x1, 1]

does not change while the measure of the set [x2, 1] decreases by m. To

bring the system back into the equilibrium I increase the transfer p so that

x1 increases and x2 decreases. In the new equilibrium, the total quantity of

the produced public good is smaller than in the original equilibrium so that

the distribution of income is not neutral in this model.
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Since the distribution is not neutral, we might be interested in fixing the

aggregate incomes of all families to be I and asking which distribution of

income produces the largest and the smallest quantities of the public good.

To answer the question I need to solve the following optimization problem 25
maxµ1,µ2 µ1 ([x1, 1])∫ 1

0
x1dµ1(x1) +

∫ 1

0
x2dµ2(x2) = I

µ1 ([x1, 1]) = µ2 ([x2, 1])

(2.4.3)

The problem has a simple and intuitively obvious solution. If a1
1 > a1

2

then µ1 ({I}) = 1 (so that all income is given to the males) and µ2 ({0}) = 1

(so that no income is given to the females). That is, there is only one type

of male and one type of female so that the distribution is degenerate. Any

arbitrary match is possible and transfers are not uniquely determined. If

a1
1 < a1

2 then the quantity of the public good is maximized if all the income

is given to the females.

The opposite rule minimizes the total quantity of the produced public

good. If a1
1 < a1

2 then µ1 ({I}) = 1 and µ1 ({0}) = 1. If a1
1 > a1

2 then

µ1 ({I}) = 0 and µ1 ({I}) = 1.

2.4.2 Marriage Market with Complementary Choices

I consider an example of the marriage market in which each individual chooses

a level of education and an age of marriage. The model is set up as a static

model26 . However, I allow the matched partners to choose a different age

of marriage in the model. To interpret this type of matches in the static

model I illustrate by example that the equilibrium of the static model can be

25This problem finds the distributions of types that maximizes the total quantity of
public good. To solve the opposite problem I need to change max to min in the problem.

26The model is an application of a static MK
N model
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represented as a steady state equilibrium of a multi-period marriage market.

Under the multi-period interpretation a new generation enters the market

each period and each individual chooses whether to marry in the period of

entry (which corresponds to the decision marry early in the static model)

or to marry in the subsequent period (which corresponds to the decision to

marry late). The matches in which agents choose different age to marry are

interpreted as cross-generation marriages.

Now I proceed with a formal description of the static model. Let’s con-

sider the following marriage market. Male type27 is denoted by a scalar

x1 ∈ [0, ϑ1] ⊂ R and female type is denoted by x2 ∈ [0, ϑ2] ⊂ R. The distri-

bution of male types is denoted by µ1 and the distribution of female types

is denoted by µ2. If a male and a female match, they make a decision k

which is described by a vector k = (k1, k2, l1, l2), where k1 ∈ {0, 1} denotes

the male’s choice of education, k2 ∈ {0, 1} denotes the female’s choice of

education (k1 = 0 and k2 = 0 denote low level of education and k1 = 1 and

k2 = 1 denote high level of education) , l1 ∈ {0, 1} denotes the male’s choice

of the age of marriage, and l2 ∈ {0, 1} denotes the female’s choice of the age

of marriage (l1 = 0 and l2 = 0 denote the choice to marry early and l1 = 1

and l2 = 1 denote the choice to marry late28). Given the types x1 and x2

of the matched individuals and the decision k = (k1, k2, l1, l2) made in the

match, the surplus generated in the match is

u(x1, x2, k) = ak1
1 x1 + ak2

2 x2 + [bk1,l1
1 + bk2,l2

2 + bl1,l2 ] (2.4.4)

In this example of the marriage market, I analyze, in detail, the case in

which weak complementarity exists between any two choices of an individ-

27The type variable may have different interpretations. It could be, for example, ability
of an individual, or income saved by the individual’s parents for his education.

28In the multi-period market l1 = 0 and l2 = 0 denote the choice to marry at the period
of entry and l1 = 1 and l2 = 1 denote the choice to marry in the subsequent the period
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ual and strict complementarity exists between the choice of education and

the type of an individual. I define complementarity similar to how it is de-

fined between types in the matching literature29. For example, for any given

choices l1, l2, k2 and any given female’s type x2, a male’s choice of k1 ∈ {0, 1}

is strictly complementary to the male’s type x1 ∈ [0, ϑ1] if for k′′1 = 1 > 0 = k′1

and any x′′1 > x′1

u(1,k2,l1,l2)(x′′1, x2) + u(0,k2,l1,l2)(x′1, x2) > u(1,k2,l1,l2)(x′1, x2) + u(0,k2,l1,l2)(x′′1, x2)

(2.4.6)

Using 2.4.4, it is immediate that condition 2.4.6 is equivalent to

a1
1 > a0

1 (2.4.7)

Similarly, a female’s choice of education is strictly complementary to the

female’s type x2 if

a1
2 > a0

2 (2.4.8)

Analogously, I define weak complementarity between any two choices of an

individual. For example, for any given types x1 and x2 and any given choices

l2, k2 a male’s choice k1 is weakly complementary to the male’s choice l1 if

u(1,k2,1,l2)(x1, x2) + u(0,k2,0,l2)(x1, x2) ≥ u(1,k2,0,l2)(x1, x2) + u(0,k2,1,l2)(x1, x2)

or, equivalently,

b1,1
1 + b0,0

1 ≥ b1,0
1 + b0,1

1 (2.4.9)

29In the matching literature the surplus function u(x1, x2) typically depends only on
types of the individuals and the types are assumed to be complements. Formally, comple-
mentarity between the types is defined as the following condition on the surplus function.
For any x′′1 > x′1 and x′′2 > x′2

u(x′′1 , x′′2) + u(x′1, x
′
2) ≥ u(x′′1 , x′2) + u(x′1, x

′′
2) (2.4.5)
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Similarly, a female’s choices k2 is weakly complementary to the female’s

choice l2 if

b1,1
2 + b0,0

2 ≥ b1,0
2 + b0,1

2 (2.4.10)

and a male’s choices l1 is weakly complementary to a female’s choice l2 if

b1,1 + b0,0 ≥ b1,0 + b0,1 (2.4.11)

I also assume that

ak1
1 ≥ 0 ak2

2 ≥ 0 (2.4.12)

that is, individuals of higher types generate higher surplus.

Before I describe the equilibrium analytically, I need to define it. Note

that in Definition 2.3.1 of the equilibrium I consider a market for each possible

decision of a matched pair. In equilibrium, the transfers between married

partners clear each of these markets. In the example of this section, I redefine

the equilibrium in such a way that the number of markets is reduced to a

single market30. For a surplus function of the form 2.4.4 I consider only the

market for a female’s choice to marry late 31. Thus, I need to construct

only the transfer p that a male pays to a female who chooses to marry

late. An equilibrium in the marriage market is described by (1) the market

clearing transfer, (2) the corresponding matches, and (3) the optimal choices

of different types of individuals. In section 2.6.6, I illustrate by example that

the equilibrium constructed in this example can be equivalently represented

as the equilibrium introduced in Definition 2.3.1. Therefore, the definition

of the equilibrium that I use in this section simplifies the analysis but does

not introduce a new equilibrium concept of the model.

30I do not have a theory yet that describes how in general to reduce the number of
markets, that correspond to different decisions, for a given arbitrary form of the surplus
function. Analysis of the problem is a part of my current research.

31Alternatively, I may consider the market for male’s choice to marry late or the market
that corresponds to some other choice.
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Let’s now consider the market for a female’s choice l2 = 1. First, I define

the demand sets and the demand correspondences for males and females. For

a given transfer p, the upper demand set D1(p) for males is the set of types

of males who weakly prefer to be matched with a female who chooses l2 = 1.

That is,

D1(p) =
{

x1 : max
(k1,l1)

(
ak1

1 x1 + bk1,l1
1 + bl1,1

)
−p ≥ max

(k1,l1)

(
ak1

1 x1 + bk1,l1
1 + bl1,0

)}
(2.4.13)

Similarly, the upper demand set for females is the set of types of females

who weakly prefer l2 = 1 over l2 = 0.

D2(p) =

{
x2 : max

k2

(
ak2

2 x2 + bk2,1
2

)
+ p ≥ max

k2

(
ak2

2 x2 + bk2,0
2

)}
(2.4.14)

The lower demand set for males D1(p) and the lower demand set for

females D2(p) is defined analogously using strict inequalities in (2.4.13) and

(2.4.14). A demand set for males is any set D1(p) such that

D1(p) ⊆ D1(p) ⊆ D1(p) (2.4.15)

Similarly, a demand set for females is any set D2(p) such that

D2(p) ⊆ D2(p) ⊆ D2(p) (2.4.16)

To define the equilibrium, I use the concept of demand correspondences32.

The demand correspondence for males d1(p) is defined as

d1(p) =
[
µ1 (D1(p)) , µ1

(
D1(p)

)]
(2.4.17)

and the demand correspondence for females d2(p) is defined as

d2(p) =
[
µ2 (D2(p)) , µ2

(
D2(p)

)]
(2.4.18)

Now, I define equilibrium in the market as follows.

32For any transfer p the demand correspondence for males is the interval of measures of
male demand sets D1(p) that satisfy 2.4.15.
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Definition 2.4.1 Equilibrium of the marriage market is defined as

1. a transfer p̂ from a male to his female partner33 if she chooses l2 = 1,

2. the male and female demand sets D1(p̂) and D2(p̂) that satisfy (2.4.15)

and (2.4.16),

3. the optimal choices k̂1(x1), l̂1(x1), and l̂m2 (x1) of males of types x1 ∈

[0, ϑ1], and the optimal choices k̂2(x2) and l̂2(x2) of females of types

x2 ∈ [0, ϑ2]

such that the demand sets D1(p̂) and D2(p̂) have a common measure.

µ1(D1(p̂)) = µ2(D2(p̂)) (2.4.19)

Note that (2.4.19) is possible only if

d1(p̂) ∩ d2(p̂) 6= ∅ (2.4.20)

The demand sets D1(p̂) and D2(p̂) generate the equilibrium matching func-

tion. In the equilibrium males of type x1 ∈ D1(p̂) are matched in any one-to-

one fashion to females of type x2 ∈ D2(p̂). Similarly, males of type x1 /∈ D1(p̂)

are matched in any one-to-one fashion to females of type x2 /∈ D2(p̂).

Now that the equilibrium and each of its components have been defined, I

am able to give a step by step process that describes informally the construc-

tion of the equilibrium. First, I construct demand correspondences d1(p) and

d2(p) for p ∈ (−∞,∞). Given d1(p) and d2(p), I find a transfer p̂ and con-

struct the sets D1(p̂) and D2(p̂) such that (2.4.20) holds. Given p̂, I find the

optimal choices k̂1(x1), l̂1(x1), l̂
m
2 (x1) of males of types x1 ∈ [0, ϑ1], and the

optimal choices k̂2(x2) and l̂2(x2) of females of types x2 ∈ [0, ϑ2].

In the next section, I provide details of a general construction of equilib-

rium in the case of complementary choices.

33The transfer can be either positive or negative.
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Complementary Choices

In this section I assume that parameters of the surplus function 2.4.4 satisfy

the properties 2.4.7 − 2.4.12.

In order to derive the demand correspondences, I need to derive the upper

and lower demand sets. In order to do so, I need to construct the optimal

choices of the females of different types. I begin by deriving a female’s optimal

choice of education k2, given her type x2 and choice l2. If a female of type

x2 chooses l2 = 0, then the choice k2 = 0 gives her a higher utility than the

choice k2 = 1 if

a0
2x2 + b0,0

2 ≥ a1
2x2 + b1,0

2 (2.4.21)

Similarly, for l2 = 1, the optimal choice is k2 = 0 if

a0
2x2 + b0,1

2 ≥ a1
2x2 + b1,1

2 (2.4.22)

The optimal choice of k2 conditional on lf2 and x2 (denoted as k̃2(l
f
2 , x2)) can

be derived from 2.4.21 and 2.4.22. In order to do so, let34 xl
2 =

b0,1
2 −b1,1

2

a1
2−a0

2
and

xr
2 =

b0,0
2 −b1,0

2

a1
2−a0

2
. The function k̃2(l

f
2 , x2) is illustrated in Figure 2.4.1. Whenever

a female whose type is less than xr
2 =

b0,0
2 −b1,0

2

a1
2−a0

2
chooses to marry early, the

female also chooses low education. Whenever a female whose type is less than

xl
2 =

b0,1
2 −b1,1

2

a1
2−a0

2
chooses to marry late, the female also chooses low education.

-

6

xl
2 xr

2 x2

k̃2(0, x2)

0

1

k2

-

6

xl
2 xr

2 x2

k̃2(1, x2)

0

1

k2

Figure 2.4.1 A female’s optimal choice k̂2, given her choice l2 and her type x2.

34Note, that from 2.4.8 and 2.4.10 it follows that xr
2 ≥ xl

1
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Now I can find the optimal choices k̂2 and l̂2 of a female of type x2. If

x2 < xl
2 and l2 = 0 then k̂2 = 0 and her utility is u2 = a0

2x2 + b0,0
2 . If

x2 < xl
2 and l2 = 1 then k̂2 = 0 and her utility is u2 = a0

2x2 + b0,1
2 + p.

Therefore, the female of type x2 < xl
2 chooses l2 = 1 whenever p ≥ b0,0

2 − b1,0
2 .

Similarly, if x2 ∈ [xl
2, x

r
2] then the female chooses l2 = 1 whenever p ≥

(b1,0
2 − b0,1

2 ) − (a1
2 − a0

2)x2, and, if x2 ≥ xr
2, then the female chooses l2 = 1

whenever p ≥ b1,0
2 − b1,1

2 . For any transfer p, Figure 2.4.2 illustrates the set of

females’ types x2 who choose l2 = 1 as well as the upper and lower demand

sets for females D2(p) and D2(p).

-

6

HH
HHHH

p

x2

b1,0
2 − b1,1

2 b0,0
2 − b0,1

2

xl
2

xr
2

Figure 2.4.2 The dashed region and its boundary show the set of pairs (p, x2) such that,

given transfer p, the type x2 female weakly prefers l2 = 1 over l2 = 0. The upper demand

set D2(p) is the set of types x2 for which (p, x2) belongs to either the interior or the

boundary of the dashed region and the lower demand set D2(p) is the set of types x2 for

which (p, x2) belongs to the interior of the dashed region.

For each p, the measures of the lower and upper demand sets for females

determine the demand correspondence for females d2(p). The demand corre-

spondence for females d2(p) is shown in Figure 2.4.3.
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-

6

��
��
��

pb1,0
2 − b1,1

2 b0,0
2 − b0,1

2

µ2

(
[xr

2, ϑ2]
)

µ2

(
[xl

2, ϑ2]
) d2(p)1

0

Figure 2.4.3 Demand correspondence for females

In a similar fashion I derive the demand correspondence for males d1(p).

If I let35

b̃
k1,lm2
1 = max

l1

[
bk1,l1
1 + bl1,lm2

]
(2.4.24)

and note that the transfer p is subtracted from the utility of a male, then the

utility function of a male is analogous to the utility function of a female used

in the previous construction. Therefore, the optimal choices, the demand

sets, and the demand correspondence for males can be derived analogously

to how it has been done for females. The males’ optimal choice k̃1(l
m
2 , x1)

conditional on choice lm2 and type x1 is illustrated in Figure 2.4.4.

-

6

xl
1 xr

1 x1

k̂1(0, x1)

0

1

-

6

xl
1 xr

1 x1

k̂1(1, x1)

0

1

Figure 2.4.4 A male’s optimal choice k̂1, given his choice lm2 and his type x1.

35Note, that from 2.4.9 and 2.4.11 it follows that

b̃1,1
1 + b̃0,0

1 ≥ b̃1,0
1 + b̃0,1

1 (2.4.23)
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In the picture, whenever a male whose types is less than xr
1 =

b̃0,0
1 −b̃1,0

1

a1
1−a0

1
chooses

partner who marries early, the male also chooses low education. Whenever

a male whose type is less than xl
1 =

b̃0,1
1 −b̃1,1

1

a1
1−a0

1
chooses a partner who marries

late, the male also chooses low education. (Note, that from 2.4.7 and 2.4.23

it follows that xr
1 ≥ xl

1). The upper and lower demand sets D1(p) and D1(p)

for males are illustrated in Figure 2.4.5.

-

6

��
��
��

p

x1

b̃0,1
1 − b̃0,0

1 b̃1,1
1 − b̃1,0

1

xl
1

xr
1

Figure 2.4.5 The dashed region and its boundary show the set of pairs (p, x1) such that,

given transfer p, the type x1 male weakly prefers to be matched with a female who chooses

l2 = 1. The upper demand set D1(p) is the set of types x1 for which (p, x1) belongs either

to the interior or the boundary of the dashed region and the lower demand set D1(p) is

the set of types x1 for which (p, x1) belongs to the interior of the dashed region.

Using the upper and lower demand sets D1 and D1(p) I derive the demand

correspondence d1(p) which is illustrated in Figure 2.4.6.

-

6

pb̃1,1
1 − b̃1,0

1b̃0,1
1 − b̃0,0

1

µ1

(
[xr

1, ϑ1]
)

µ1

(
[xl

1, ϑ1]
)

d1(p)

1

0

Figure 2.4.6 Demand correspondence for females
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Now I construct the equilibrium of the model. The equilibrium transfer,

optimal decisions, and corresponding matching can be found by following the

steps below.

1. Find the transfer p̂ at which the demand correspondences intersect.

The transfer p̂ is the equilibrium transfer and m̂ ∈ d1(p̂) ∩ d2(p̂) is the

measure of couples who choose l2 = 1 when matched.

2. Using p̂, m̂, and Figures 2.4.2 and 2.4.5, derive which types of females

and males choose l2 = 1 and lm2 = 1 and derive the demand sets D1(p̂)

and D2(p̂).

3. Using l̂2, l̂m2 , and Figures 2.4.1 and 2.4.4, derive the females’ and males’

optimal choices k̂2 and k̂1.

4. Finally, using k̂1, l̂m2 derive the males’ optimal choice l̂1 from the fol-

lowing equation

l̂1 = arg max
l1

[
bk̂1,l1
1 + bl1,l̂2m

]
(2.4.25)

The qualitative nature of the equilibrium depends on the form of the

intersection of the demand correspondences d1(p) and d2(p) and on the so-

lution of 2.4.25. I describe two “interesting” cases. In each case, the set of

types of males and the set of types of females are partitioned into two sub-

sets: a subset of low-type individuals and a subset of high-type individuals.

The low-type individuals choose low level of education while the high-type

individuals choose high level of education. In the first case, the matched

partners have the same level of education and choose the same age to marry.

In the second case, partners may have different levels of education and have

different age. Note, that in the second case the equilibrium has a natural

interpretation as a steady state in the multi-period setting.
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Generally, there are several forms that the intersection of the demand

correspondences may take. I provide the context for two cases. The first

case occur when the demand correspondences intersect as shown in Figure

2.4.7 and36 {
b0,0
1 + b0,0 ≥ b0,1

1 + b1,0

b1,1
1 + b1,1 ≥ b1,0

1 + b1,0 (2.4.26)

.

-
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Intersection of the demand
correspondences for males and females

d2(p)

d1(p)

p̂

m̂

p

Figure 2.4.7 This picture illustrates the case for which the equilibrium transfer p̂ belongs

to the interval (b1,0
2 − b1,1

2 , b0,0
2 − b0,1

2 ) ∩ (̃b0,1
1 − b̃0,0

1 , b̃1,1
1 − b̃1,0

1 ) in which the demand cor-

respondence for females is strictly increasing and the demand correspondence for males is

strictly decreasing.

To describe the equilibrium I follow the four steps outlined above. From

the intersection of demand correspondences I find the transfer p̂ and the

measure of couples m̂ in which the female marries late. Using Figure 2.4.3, I

find that p̂ ∈ (b1,0
2 − b1,1

2 , b0,0
2 − b0,1

2 ). Using Figure 2.4.2, I find that females of

types [0, x2] choose l̂2 = 0 and females of types [x2, ϑ2] choose l̂2 = 1, where

x2 ∈ (xl
2, x

r
2) and µ2([x2, ϑ2]) = m̂. Using the left panel of Figure 2.4.1, I find

that the optimal choice of education of a female of type x2 ∈ [0, x2] is k̂2 = 0

and, using the right panel of Figure 2.4.1, I find that the optimal choice of

education of a female of type x2 ∈ [x2, ϑ2]is k̂2 = 1. Analogously, I construct

36This condition determines the males’ optimal choice l̂1
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the male optimal choices of lm2 and k2. The male optimal choice of l1 is found

from equation 2.4.25

The equilibrium is illustrated in Figure 2.4.8.

�

�

0 0

ϑ1 ϑ2

x1 x2


k̂1 = 1
l̂1 = 1
l̂m2 = 1
k̂1 = 0
l̂1 = 0
l̂m2 = 0

{
k̂2 = 1
l̂2 = 1

{
k̂2 = 0
l̂2 = 0

Figure 2.4.8 In the pictures x1 and x2 are such that µ1([0, x1]) = µ2([0, x2]) = m̂.

Arrows indicate matched sets and choices are indicated beside each set. Low-type males,

x1 ∈ [0, x1], are matched in any one-to-one fashion to low-type females x2 ∈ [0, x2] and

high-type males, x1 ∈ [x1, ϑ1], are matched in any one-to-one fashion to high-type females

x2 ∈ [x2, ϑ2].

The second case under consideration occurs when the demand correspon-

dences intersect as illustrated in the following picture

-
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HH
HH

Intersection of the demand
correspondences for males and females

d2(p)d1(p)

p̂

m̂

p

Figure 2.4.9 This picture illustrates the case for which the equilibrium transfer is p̂ =

b̃1,1
2 − b̃1,0

2 . The demand correspondence for females is strictly increasing at p̂ and the

demand correspondence for males is vertical at p̂.
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In this case, following the four steps outlined above leads to the equilibrium

illustrated in Figure 2.4.10 when

{
b0,0
1 + b0,0 ≥ b0,1

1 + b1,0

b1,1
1 + b1,1 ≥ b1,0

1 + b1,0 .

�

�

A
A
AK

�

�

0 0

ϑ1 ϑ2

xr
1

x2

0 0

ϑ1 ϑ2

xr
1

x2

period t− 1 period t


k̂1 = 1
l̂1 = 1
l̂m2 ∈ {0, 1}
k̂1 = 0
l̂1 = 0
l̂m2 = 0

{
k̂2 = 1
l̂2 = 1

{
k̂2 = 0
l̂2 = 0

Figure 2.4.10 The agents of types shown on the left side of the picture enter the marriage

market in period t− 1 and the agents of types shown on the right side of the picture enter

the marriage market in period t. In the picture, x2 is such that µ2([0, x2]) = m̂. Arrows

indicate matched sets and choices are indicated beside each set. In the example, some

of the high-type males who obtain high education and choose to marry late are matched

to low-type females who obtain low education and choose to marry early. In this type of

marriage males enter the marriage market in period t− 1 and wait until period t to match

with a female partner.

Comparative Statics

I now use the analytical description of the equilibrium to show how a change

in the parameters of the marriage market model affects the equilibrium. I

provide only one example that shows how a change in the females’ value of

the high level of education, a1
2, affects (i) the choices of education and age to

marry and (ii) transfers in the matched couples. I describe how the equilib-

rium changes as a1
2 increases. A small difference between the coefficients a1

2
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and a0
2 can be interpreted, for example, as existence of barriers for females

to obtain high-level job positions. The difference a1
2− a0

2 can be measured as

the effect of females’ education on their wages.

¿From the construction of the equilibrium we can see that a change in a1
2

effects only the cut-offs

xl
2 =

b0,1
2 − b1,1

2

a1
2 − a0

2

and xr
2 =

b0,0
2 − b1,0

2

a1
2 − a0

2

for females constructed on page 42. As a1
2 increases the female demand

correspondence shifts as illustrated below.

d2(p)

pb1,0
2 − b1,1

2 b0,0
2 − b0,1

2

If a1
2 is close to a0

2, the intersection of demand correspondences is as

shown in Figure 2.4.9. Figure 2.4.10 illustrates the equilibrium in the market

in this case. In this case, the cutoff that separates females by age of marriage

(denoted by x2) is close to or equal to ϑ2. Therefore, the measure of the set of

females of types x2 ≥ x2 who marry late and obtain a high level of education

is close or equal to zero. The set of males of types x1 ≥ xr
1 who marry late

and obtain a high level of education does not change with a change in a1
2 as

long as the demand correspondences intersect as shown in Figure 2.4.9. The

males in the set are indifferent about the age of their partner. Some of them

are matched with females from their own generation and others are matched

with females from a younger generation.

As the value of education for females a1
2 increases, the cutoff that sep-

arates females by age of marriage decreases so that the measure of the set
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of females who marry late and obtain a high level of education increases,

that is, x2 decreases as a1
2 increases. If, after an increase in a1

2, the demand

correspondences still intersect as shown in Figure 2.4.9, then the transfers

do not change even though some males who formerly matched with females

who marry early now match with females who marry late. This is because

the males in any new matches that take place are indifferent among females

who marry late or marry early so that these males do not obtain a higher

transfer for switching from one partner to the other.

As a1
2 increases further, the intersection of demand correspondences be-

comes as shown in Figure 2.4.7. The new equilibrium is shown in Figure 2.4.8.

There are no cross-generation marriages in the new equilibrium and there is

a complete segregation with respect to education level of the partners.

Similarly, I can analyze the effect of changes in other coefficients of the

surplus function (which can be interpreted as education costs, costs of ob-

taining a job, costs of cross-generation marriages, etc.) on the matching

pattern and equilibrium transfers within different types of families.

Non Complementary Choices

Note that matching illustrated in Figures 2.4.8 and 2.4.10 can be naturally

interpreted as assortative matching. In each figure, the set of low type males

is matched to the set of low type females and the set of high type males is

matched to the set of high type females. This result may not be true if the

choices of the individuals are not complementary to each other. Let’s illus-

trate this by example. I assume now that all inequalities 2.4.7 - 2.4.12 hold

except the inequality 2.4.11 so that choices l1 and l2 are not complementary.

Moreover, I assume that the parameters of the surplus function are such that

b̃0,0
1 + b̃1,1

1 < b̃1,0
1 + b̃0,1

1 (2.4.27)
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where b̃1 is defined in 2.4.24. The equilibrium can be derived in a similar

fashion as it is done in the previous example. In particular, it can be shown

that the lower and upper demand sets for males and females are such as

shown in Figure 2.4.11.
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Figure 2.4.11 The picture illustrates the demand sets for males and females for different

transfers p. The bold lines illustrate how the sets are matched to each other at equilibrium

transfer p̂.

If the demand correspondence for males is strictly decreasing at the equi-

librium transfer p̂ and the demand correspondence for females is strictly

increasing at the equilibrium transfer p̂ then, under certain conditions on b̃,

the equilibrium matching is illustrated by the following figure.
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
k̂1 = 1
l̂1 = 1
l̂m2 = 1
k̂1 = 0
l̂1 = 0
l̂m2 = 0

{
k̂2 = 1
l̂2 = 1

{
k̂2 = 0
l̂2 = 0

2.5 Conclusion and Extensions

The chapter studies a one-to-...-one N -lateral matching model in which an

agent from a matched group of N people cares about a decision made by the
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group and not about the types of the partners. The chapter focuses on the

case in which there is a continuum of agents in each of the N classes, each

agent is endowed with a multi-dimensional type, and the distribution of types

has a continuous density function. To construct an equilibrium of the model

I solve an associated minimization problem. It is shown that the problem

is convex and the solution of the problem is the equilibrium of the model.

Standard Gauss-Seidel methods can be applied to construct the equilibrium

numerically.

The chapter provides easily verifiable conditions for the uniqueness of the

equilibrium.

Even in the case of bilateral matching, my model introduces an alterna-

tive representation of a standard matching model with no frictions in which

utility is transferrable. In the new representation of the bilateral matching

model an individual looks for a partner to undertake some project k. The

choice of the project and the partner depends on the transfers between the

matched individuals as they decide which project to choose, and does not

depend directly on the type of the partner. In this chapter, I derive the

properties of the equilibrium of the model and show how the equilibrium can

be constructed.

To illustrate the contributions of the model in the bilateral setting, I dis-

cuss in this chapter two applications of the model. In the first application, I

show how the total quantity of public good produced by families depends on

the distribution of income between males and females. The second applica-

tion illustrates how complementarity between the individual choices affects

the matching pattern and shows, for example, how a change in the cost

of education for females affects the education and age of each partner in a

match.
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There is a large variety of extensions of the model, some of which are a

part of my current research. I mention only two.

If you use the model to interpret data on married couples you would nat-

urally assume that there is some random component that affects the choices

of the individuals. There is a natural way to introduce noise in the model.

It can be shown that, in the modified model, the equilibrium has analogous

properties as in the deterministic model and therefore similar tools show how

the equilibrium can be constructed. Alternatively, you can use the determin-

istic model of this chapter to describe data but you may have to assume that

some of the types of agents are not observable.

These and other extensions and applications of the model are a part of

my current research.

2.6 Appendix

2.6.1 Equilibrium and Stable Matching

Proposition 2.3.1

(i) Equilibrium matching and transfers generate a stable matching.

(ii) Any stable matching is generated by some equilibrium matching and

transfers.

Proof.

(i) Suppose that an array of transfers pk
n,0 and corresponding demand sets

describe an equilibrium of the model. Then, by definition of the demand

set, an agent in class n of type xn obtains a transfer

pn(xn) =
N

max
l=0

[
al

nxn + pl
n,0

]
(2.6.1)
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Equation 2.6.1 implies that for any decision k∑
n

pn(xn) ≥
∑

n

[
ak

nxn + pk
n,0

]
=
∑

n

ak
nxn + ak

0 (2.6.2)

and, therefore, condition 2.3.14 of Definition 2.3.2 holds. On the other

hand, if agents of types (x1, m2(x1), . . . ,mN(x1)) are matched into a

group then, by definition of the equilibrium matching, they all choose

the same decision k and this decision maximizes their utility. That is

pn(mn(x1)) = ak
nmn(x1) + pk

n,0 (2.6.3)

Therefore, condition 2.3.15 of Definition 2.3.2 holds.

(ii) Suppose that functions (m2(·), . . . ,mN(·)) and corresponding transfers

pn(xn), n = 1, . . . , N describe a stable matching. For each n and k let

Xk
n denote the set of types of agents in class n that belong to a matched

group of types for whom decision k maximizes the match surplus. First,

I show that, for any n, k and xn ∈ Xk
n, the transfer function pn(xn) is

pn(xn) = ak
nxn + pk

n,0 (2.6.4)

where (pk
n,0) is some array of parameters. Suppose that, for some n, k,

and xn ∈ Xk
n, 2.6.4 does not hold, or, equivalently, function pn(xn) −

ak
nxn is not constant on Xk

n. Then there exist two points xn and x̂n

such that

pn(x̂n)− ak
nx̂n < pn(xn)− ak

nxn (2.6.5)

Suppose that type xn agent is matched with the agents of types (x1, . . . , xN).

By Definition 2.3.2 of stable matching (equation 2.3.14), the sum of

transfers of the agents is equal to the surplus, generated by the agents.∑
m6=n

pm(xm) + pn(xn) =
∑
m6=n

ak
mxm + ak

nxn + ak
0 (2.6.6)
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From 2.6.5 and 2.6.6 it follows that

∑
m6=n

pm(xm) + pn(x̂n) <
∑
m6=n

ak
mxm + ak

nx̂n + ak
0 (2.6.7)

But the last inequality contradicts condition 2.3.14 in Definition 2.3.2

of the stable matching. To finish the proof I need to show that, for any

n, k, l, and any xn ∈ Xk
n

ak
nxn + pk

n,0 ≥ al
nxn + pl

n,0 (2.6.8)

Suppose that the inequality does not hold for some n = 1, . . . , N, k, l =

1, . . . , K, and xn ∈ Xk
n. That is, there exist indices n, k, l and type

x̂n ∈ Xk
n such that

ak
nx̂n + pk

n,0 < al
nx̂n + pl

n,0 (2.6.9)

Let’s pick some arbitrary vector of types (x1, . . . , xn, . . . , xN) such that

decision l maximizes the surplus if the types form a match. Let’s con-

sider the vector of types (x1, . . . , x̂n, . . . , xN) in which type xn is re-

placed by x̂n. If the types (x1, . . . , x̂n, . . . , xN) are matched, then the

surplus generated in the match is at least

u(x1, . . . , x̂n, . . . , xN) ≥
∑
m6=n

al
mxm + al

nx̂n + al
0 (2.6.10)

On the other hand, using 2.6.9 and 2.6.10 I obtain that the sum of

transfers of agents of types (x1, . . . , x̂n, . . . , xN) is∑
m6=n

[
al

mxm + pl
m,0

]
+ ak

nx̂n + pk
n,0 <

∑
m6=n

[
al

mxm + pl
m,0

]
+ al

nx̂n + pl
n,0

≤ u(x1, . . . , x̂n, . . . , xN)

which contradicts condition 2.3.14 in Definition 2.3.2 of the stable

matching.
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2.6.2 Existence of the Equilibrium

Theorem 2.3.1 The following statements hold.

(i) For any array of transfers p0 that satisfies the constraints of the problem

2.3.21 and for any partition vector P that satisfies the constraints of

the problem 2.3.18 the value of the dual objective function is greater

or equal to the value of the objective function of the optimal partition

problem, that is W (p0) ≥ V (P).

(ii) Suppose that assumption 2.3.1 holds and in each class there is a con-

tinuum of agents endowed with multi-dimensional types and the dis-

tribution of the types has a continuous density function. Then the

optimal array of transfers p̂0 generates the partition P̂ of the sets Xn

into demand sets Dk
n, defined as in 2.3.10, such that W (p̂0) = V (P̂).

The partition P̂ is a solution to 2.3.18. The transfers p̂0 and the corre-

sponding demand sets Dk
n describe the equilibrium of the model.

(iii) If W (p̂0) > V (P̂), where p̂0 is a solution of 2.3.21 and P̂ is a solution

of 2.3.18 then the equilibrium of the model does not exist.

Proof.

(i) Let p0 be an arbitrary array of transfers that satisfies the constraints of

the problem 2.3.21 and let P be an arbitrary set partition vector that

satisfies the constraints of the problem 2.3.18. Then, by definition,

V (P) =
∑

k

[∑
n

(∫
Πk

n

ak
nxnfn(xn)dxn+

∫
Π0

n

rn(xn)fn(xn)dxn

)
+ ak

0

∫
Πk

1

f1(x1)dx1

]
(2.6.11)
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By assumption, the transfers pk
n,0 satisfy the constraints of 2.3.21, that

is
∑

n pk
n,0 = ak

0, and mass balance condition holds,
∫

Πk
1
f1(x1)dx1 =∫

Πk
n
fn(xn)dxn for any n. Therefore, if I substitute out the term ak

0

∫
Πk

1
f1(x1)dx1

in 2.6.11 and rearrange the sum, I can rewrite V (P) as

V (P) =
∑

n

[∑
k

∫
Πk

n

(
ak

nxn + pk
n,0

)
fn(xn)dxn+

∫
Π0

n

(
a0

nxn + r0
n + p0

n,0

)
fn(xn)dxn

]
(2.6.12)

or, using notation 2.3.6 for pk
n(xn) and taking summation with respect

to k inside the integral I can rewrite it as

V (P) =
∑

n=1...N

∫
Xn

( ∑
k=0...K

pk
n(xn)1Πk

n
(xn)

)
fn(xn)dxn (2.6.13)

where 1Πk
n
(xn) is the indicator function of the set Πk

n. By definition,

the value of the dual objective function is equal to

W (p0) =
∑

n=1...N
k=0...K

∫
Dk

n

pk
n(xn)f(xn)dxn (2.6.14)

or, if I take the summation with respect to k inside the integral, we

can rewrite it as

W (p0) =
∑

n=1...N

∫
Xn

( ∑
k=0...K

pk
n(xn)1Dk

n
(xn)

)
fn(xn)dxn (2.6.15)

where 1Dk
n
(xn) is the indicator function of the set Dk

n. By definition of

the demand sets, pk
n(xn) ≥ pl

n(xn) for any xn ∈ Dk
n, l = 0, . . . K. There-

fore,
∑

k=0...K pk
n(xn)1Dk

n
(xn) ≥

∑
k=0...K pk

n(xn)1Πk
n
(xn). This proves

the first part of the theorem.
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(ii) Suppose that p̂0 is the solution of 2.3.21. If the conditions of the theo-

rem hold then the function W (p0) is differentiable at point p̂0 and the

explicit expression for the derivative has been derived in section 2.3.4.

It has been shown that

for each k = 1, . . . , K µn(Dk
n) = µñ(Dk

ñ) for any n, ñ (2.6.16)

where Dk
n are the demand sets that correspond to the optimal transfers

p̂0. Therefore, the demand sets generate a partition P̂ , Π̂k
n = Dk

n, of the

sets Xn that satisfies the constraints of the problem 2.3.18. From 2.6.13,

2.6.15, and the fact that Π̂k
n = Dk

n I obtain that W (p̂0) = V (P̂). ¿From

part (i) of the lemma it follows immediately that P̂ is the solution of

problem 2.3.18.

Finally, if p̂0 is a solution to 2.3.21 then it must satisfy the constraints

of 2.3.21, therefore, the surplus balance condition holds, and the first

order conditions 2.6.16 must hold. The equations 2.6.16 are the mass

balance conditions and, therefore, the transfers p̂0 and the correspond-

ing demand sets Dk
n describe the equilibrium of the model.

(iii) Suppose that the equilibrium of the model exists. Let p̂0 be the equi-

librium transfers and Dk
n be the corresponding demand sets. From the

surplus balance condition it follows that the transfers p̂0 satisfy the

constraints of the problem 2.3.21. From the mass balance condition it

follows that the partition P̂ that corresponds to the demand sets Dk
n

satisfies the constraints of problem 2.3.18. From 2.6.13 and 2.6.15 it

follows that W (p̂0) = V (P̂).

Theorem 2.3.2 Equilibrium of MK
N always exists.
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Proof. In Proposition 2.3.2 I have shown existence of the equilibrium

in the case that Assumption 2.3.1 holds. Now I show that the equilibrium

of MK
N exists for an arbitrary array ak

n. Suppose that ak
n is some arbitrary

array of parameters of the model and {ak,(j)
n }j=0,1,2,... is a sequence of arrays

of parameters of the model such that for each j Assumption 2.3.1 holds for

the array a
k,(j)
n and a

k,(j)
n → ak

n for any n and k as j → ∞. By Proposition

2.3.2, there exists an equilibrium, described by an array of prices p̂
k,(j)
n and

corresponding demand sets D
k,(j)
n , in the model with parameters a

k,(j)
n . With-

out loss of generality, I assume that for each n and k the sequences p̂
k,(j)
n and

µn(D
k,(j)
n ) converge37. Let p̂k

n and µk
n denote the limits of the sequences.

The transfers p̂k
n generate the upper demand sets D

k

n as described in 2.3.8.

Since the distribution µn has a continuous density function then for any pair

of decisions (k, l) either D
k

n = D
l

n or µn(D
k

n ∩D
l

n) = 0. The case D
k

n = D
l

n

occurs whenever ak
n = al

n and p̂k
n = p̂l

n. Let K(k) denote the set of decisions{
l : D

k

n = D
l

n

}
.

Let D
K(k),(j)
n =

⋃
l∈K(k) D

l,(j)
n and suppose that xn belongs to the interior of

the set D
k

n. Then, by definition of the upper demand set, ak
nxn + p̂k

n > al
nxn +

p̂l
n for any l /∈ K(k). Therefore, if j is large enough, then a

k,(j)
n xn + p̂

k,(j)
n >

a
l,(j)
n xn + p̂

l,(j)
n for any l /∈ K(k). The last inequality implies that xn belongs

to the interior of D
K(k),(j)
n for j large enough. Analogously, if xn belongs to

the interior of the complement of D
k

n then xn belongs to the interior of the

complement of the set D
K(k),(j)
n . Since measure µn is continuous the measure

of the boundary of the set D
k

n is zero. Therefore,

µn(D
k

n) =
∑

l∈K(k)

µl
n (2.6.17)

37If the sequence does not converge for some n and k I can always choose a converging
subsequence.
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The demand sets Dl
n are constructed now as follows. For each subset of in-

dices K(k) of the set of indices {0, 1, . . . , K} I construct an arbitrary partition

of the set D
k

n into measurable subsets Dl
n, l ∈ K(k) such that µn(Dl

n) = µl
n.

It is straightforward to show now that the array of prices p̂k
n and demand

sets Dl
n describe the equilibrium of the model with parameters ak

n.

2.6.3 Eigenvectors of Ωn(pn,0) when Eigenvalue is Zero

Lemma 2.3.2 Vectors υn,i, i = 1 . . . η are eigenvectors that correspond to

the eigenvalue of zero of Ωn.

Proof. I need to show that for any row k the following equality holds:∑K
l=1 ωkl

n υl
n,i = 0. It follows from the definition of vector υl

n,i that

K∑
l=1

ωkl
n υl

n,i =
∑

l∈In,i

ωkl
n

So it is sufficient to show that
∑

l∈In,i
ωkl

n . Consider, first, k /∈ In,i. For

any row k any column l for which ωkl
n 6= 0 must be adjacent to k and,

therefore, k and l must belong to a common set In,j for some j. Consider In,i

in 2.3.27.

If k /∈ In,i then k is not adjacent to any l ∈ In,i. Therefore, ωkl
n = 0 for

any k /∈ In,i, l ∈ In,i and
∑

l∈In,i
ωkl

n = 0 for any k /∈ In,i.

If k ∈ In,i then k is not adjacent to any l /∈ In,i. Therefore, ωkl
n = 0 for

any k ∈ In,i, l /∈ In,i and

∑
l∈In,i

ωkl
n =

K∑
l=1

ωkl
n

for any k ∈ In,i. By 2.3.26 I obtain
∑K

l=1 ωkl
n = 0.
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Lemma 2.3.3 Let matrix Ωn be given by formula 2.3.26. Then the

vectors, defined by 2.3.27, form a basis of the space of eigenvectors that

correspond to the eigenvalue of zero.

Proof. Let υ be such that Ωnυ = 0. To show that υ can be represented

as a linear combination of υn,i, i = 1 . . . η vectors it is sufficient to show that

υk = υl for any k, l ∈ In,i. Let υk1 = maxj∈In,i
υj.

¿From the formula of the second derivative 2.3.26 I obtain ωk1k1
n = −

∑
k:k 6=k1

ωk1k
n .

For any k /∈ In,i column k is not connected to k1 and, therefore, ωk1k
n =

0. Thus the equality can be rewritten as ωk1k1
n = −

∑
k∈In,i

k 6=k1

ωk1k
n . Since

−ωk1k
n

2.3.26
= τ k1k

n ≥ 0 and υk1 ≥ υk for any k ∈ In,i and k 6= k1 I obtain

ωk1k1
n υk1 ≥ −

∑
k∈In,i

k 6=k1

ωk1k
n υk (2.6.18)

and the inequality is strict if υk1 > υk for some k 6= k1 such that −ωk1k
n > 0.

On the other hand, since Ωnυ = 0 inequality 2.6.18 must be an equality.

Therefore υk = υk1 for any k such that ωk1k
n > 0. This proves that υk = υk1

for any column k adjacent to k1. Applying the same argument to any column

k adjacent to k1 I can show that υl = υk for any column l adjacent to k since

υk = maxj∈In,i
υj. But then it must be true that υl = υk1 for any column

l ∈ In,i connected to k1.

2.6.4 Uniqueness of the Equilibrium

Lemma 2.3.4 Suppose that p̃0 and p̂0 are two equilibrium transfer matrices

and k and l are two decisions that are connected in Ωn(p̃n,0) at transfers p̃n,0.

Then p̂k
n,0 − p̃k

n,0 = p̂l
n,0 − p̃l

n,0.

Proof. If p̃0 and p̂0 are two equilibrium transfer matrices then they are so-
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lutions to the minimization problem 2.3.21 and W (p̃0) = W (p̂0). Moreover,

by convexity of W (p0), any transfer matrix pt
0 = p̃0 + t (p̂0 − p̃0) , t ∈ [0, 1] is

a solution to 2.3.21 and the function s (t) = W (pt
0) is constant for t ∈ [0, 1].

Therefore the second derivative of s (t) is zero.

I now find the second derivative of s (t). By 2.3.19 W (pt
0) =

∑
m Wm

(
pt

m,0

)
.

By 2.3.26 the second derivative of Wm

(
pt

m,0

)
is Ωm

(
pt

n,0

)
. Therefore, the sec-

ond derivative of s (t) is

d2s (t)

dt2
=

N∑
m=1

(p̂m,0 − p̃m,0)
T Ωm

(
pt

m,0

)
(p̂m,0 − p̃m,0) (2.6.19)

Therefore, since each function Wm (pm,0) is convex (Proposition 2.3.3) the

second derivative d2s(t)
dt2

= 0 only if (p̂m,0 − p̃m,0)
T Ωm

(
pt

m,0

)
(p̂m,0 − p̃m,0) ≡ 0

for each m and t ∈ [0, 1]. In particular, if I take m = n

(p̂n,0 − p̃n,0)
T Ωn

(
pt

n,0

)
(p̂n,0 − p̃n,0) ≡ 0

where superscript T denotes transposition. Therefore, either p̂n,0 − p̃n,0 = 0

or p̂n,0− p̃n,0 is an eigenvector of Ωn

(
pt

n,0

)
that corresponds to the eigenvalue

of zero for any t ∈ [0, 1].

In the first case we are done. In the second case p̂n,0 − p̃n,0 is eigenvector

of Ωn

(
pt

n,0

)
|t=0 = Ωn (p̃n,0) that corresponds to the eigenvalue of zero. By

corollary 2.3.1, I obtain p̂k
n,0−p̃k

n,0 = p̂l
n,0−p̃l

n,0 = 0 for any connected decisions

k, l ∈ K+ (p̃0). This proves the lemma.

Lemma 2.3.5 Suppose that measure µn has a continuous density func-

tion fn (x). If a set of agents types Y ∈ Xn is connected38 with respect to

µn and decisions k and l are such that µn(Y ∩Dk
n) > 0 and µn(Y ∩Dl

n) > 0,

38The definition of a set connected with respect to µn is given on page 31
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where demand sets Dk
n and Dl

n are constructed for some transfer vector pn,0,

then decisions k and l are connected39 in Ωn (pn,0) at transfers pn,0.

Proof. Suppose that decisions k and l are not connected. By definition,

τ k̃l̃
n

2.3.26
= −ωk̃l̃

n = 0 for any decision k̃ that is connected to k and any decision l̃

that is not connected to k. From Definition 2.3.25 of τ k̃l̃
n I obtain fn (xn) = 0

for any xn ∈ Γk̃l̃
n since fn (xn) is continuous.

Define the set Y k ∈ Y as the set of agents types in the set Y that make

decision k or any decision that is connected to k in Ωn (pn,0). Let Kk denote

the set of such decisions. Define the set Y l ∈ Y as the set of agents types

in the set Y that make decision l or any decision that is not connected to

decision k in Ωn (pn,0). Let Kl denote the set of such decisions.

By construction, Y = Y k∪Y l and the sets A = Y k\∂Y k and B = Y l\∂Y l

are disjoint (where symbol ∂ denotes the boundary of a set). By assumption,

µn (A) > 0 and µn (B) > 0. On the other hand,

Y \ (A ∪B) ⊂ ∪k̃∈Kk

l̃∈Kl

Γk̃l̃
n

and, therefore, fn (xn) = 0 for any xn ∈ Y \ (A ∪B). This contradicts the

assumption that set the Y is connected with respect to µn.

Theorem 2.3.3 Suppose that Assumption 2.3.1 holds and in each class

n there is a continuum of agents endowed with multi-dimensional types and

the distribution of types µn has a continuous density functions fn (x). Then

the following statements are true.

(i) The set of partitions, generated by the set of solutions of the dual

minimization problem 2.3.21, is a singleton.

39See page 29 for the definition of decisions connected in Ωn (pn,0).
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(ii) Suppose that for some n, the set of types Xn is connected with respect

to µn. Also suppose that the transfers in the case of decision k0 satisfy

p̃k0
n,0 = p̂k0

n,0 for some decision k0 ∈ K+(p̂0). Then p̃k
n,0 = p̂k

n,0 for any

k ∈ K+(p̂0).

(iii) For any class n the vector of optimal transfers p̂n,0 is determined uniquely

if the set of types Xn is connected with respect to µn and a positive

measure of agents are unmatched in class n.

Proof.

(i) Suppose that p̂0 and p̃0 are two solutions of 2.3.21 that generate set

partition vectors P̂ =
(
P̂1, . . . , P̂N

)
and P̃ =

(
P̃1, . . . , P̃N

)
. Suppose

that P̂ 6= P̃ so that for some n, there exists a ball Bε
n in set Xn that

has a positive measure and is connected with respect to µn, and such

that Bε
n ∈ Dk̂

n for some decision k̂, where Dk̂
n is a subset of a partition

P̂n, and Bε
n ∈ Dk̃

n for some decision k̃ 6= k̂, where Dk̃
n is a subset of a

partition P̃n.

By convexity of W (p0), any transfer matrix pt
0 = tp̂0 + (1− t)p̃0, t ∈

[0, 1] is a solution to problem 2.3.21 and, therefore, the transfers pt
0 and

the corresponding demand sets Dt,k
n are an equilibrium of the model.

As t goes from zero to one the demand set Dt,k̂
n changes continuously.

At t = 0 Bε
n ∈ Dt=0,k̂

n and at t = 1 Bε
n ∈ Dt=1,k̂

n . Therefore, there

exists a value of t = t0 and a decision k 6= k̂ such that a positive

measure of agents’ types that belong to Bε
n choose decision k̂ and a

positive measure of agents’ types that belong to Bε
n choose decision k.

By Lemma 2.3.5 the decisions k̂ and m are connected at transfers pt0
0 .

This can be illustrated by the following figure.
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t = 0

p̂0

t = t0

pt0
0

t = 1

p̃0

Dk̂
n

Bε
n

Dk̂
n Dk

n

Bε
n

Dk̃
n

Bε
n

Figure 2.6.1 In the figure any agent in class n of type xn ∈ Bε
n makes decision k̂

at transfers p̂0. If the transfers are pt0
0 then a positive measure of agents in class

n of types xn ∈ Bε
n make decision k̂ and a positive measure of agents in class n of

types xn ∈ Bε
n make decision k. If the transfers are p̃0 then agents in class n of

types xn ∈ Bε
n make decision k̃.

By Lemma 2.3.4, I obtain p̂k̂
n,0 − pt0,k̂

n,0 = p̂k
n,0 − pt0,k

n,0 . But this implies

that any agent in class n who prefers decision k to k̂ at transfers pt0
n,0

will also prefer decision k to k̂ at transfers pk̂
n,0. This contradicts the

fact that any agent in class n of type xn ∈ Bε
n most prefers decision k̂

at transfers p̂n,0.

(ii) By Lemma 2.3.5, if the set Xn is connected then any two decisions that

are taken by a positive measure of agents in class n and are connected.

In particular, any such decision is connected to decision k0. By lemma

2.3.4, p̂k
n,0 − p̂k0

n,0 = p̃k
n,0 − p̃k0

n,0 for any two equilibrium transfers p̂0 and

p̃0. In particular, if p̂k0
n,0 = p̃k0

n,0 then p̂k
n,0 = p̃k

n,0.

(iii) The transfer for the decision to remain unmatched is always constrained

to be r0
n, p̂0

n,0 = p̃0
n,0 = r0

n. As above, lemmas 2.3.5 and 2.3.4 imply that

p̂k
n,0 = p̃k

n,0 for any decision k ∈ K+(p0).
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2.6.5 Alternative Definition of the Equilibrium

In this section, I consider a matching model which is identical to the model

of section 2.3.1 but in which the definition of equilibrium does not depend on

Assumption 2.3.1. The definition is a natural extension of Definition 2.3.1.

Let’s consider again the matching model of section 2.3.1. Suppose that

the surplus generated in a match is allocated among the matched agents and

the portion of the surplus received by an agent of type xn is of the form given

in 2.3.6 and 2.3.7. Now, in contrast with the equilibrium definition of section

2.3.2, I associate a demand set with each subset of the set of decisions K.

Let 2K denote the set of all subsets of K and let S denote an elements of 2K.

Then the demand set associated with a subset S of the set K is defined as

follows.

DS
n =

{
xn ∈ Xn : pk

n(xn) ≥ pl
n(xn) for any k ∈ S and l = 0, . . . , K and

pk
n(xn) = pk̃

n(xn) for any k, k̃ ∈ S
}

(2.6.20)

That is, the set DS
n is the set of types of agents in class n who strictly prefer

a decision k ∈ S to any decision that is not in S and who are indifferent

among the decisions in the set S. Let νS
nk denote the mass of agents in class

n of type xn ∈ DS
n that choose decision k ∈ S. By definition of νS

nk, the

collection νS
nk must satisfy∑

k∈S

νS
nk = 1 for any S ∈ 2K (2.6.21)

I define the equilibrium of the model as follows.

Definition 2.6.1 A matrix of transfers pk
n,0, corresponding demand sets DS

n (pn,0),

and a collection νS
nk is an equilibrium if:
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1. The measure of the agents that choose decision k is the same in each

set Xn. That is, for each k = 1, . . . , K∑
S∈2K

∑
k∈S

µn

(
DS

n

)
νS

nk =
∑
S∈2K

∑
k∈S

µñ

(
DS

ñ

)
νS

ñk for any n and ñ.

(2.6.22)

2. The sum of transfers to the agents in a matched group equals the con-

stant term in the surplus generated by the group.

for each k = 1, . . . , K
∑

n

pk
n,0 = ak

0 (2.6.23)

2.6.6 Equivalence of the Equilibrium Concepts

In this section, I show how the equilibrium of the model of section 2.4.2

can be naturally transformed into the equilibrium, introduced in Definition

2.6.1, of the model of section 2.3.1. (Formal proof of the equivalence of the

two equilibrium concepts is beyond the scope of this work). I illustrate the

equivalence of the two equilibrium concepts by considering the two equilib-

rium examples of section 2.4.2, the first example on page 47 (Figures 2.4.7

and 2.4.8) and the second example on page 48 (Figures 2.4.9 and 2.4.10).

To give an equivalent representation of the equilibrium in each of the two

examples, I describe the corresponding transfers pk1,k2,l1,l2
n , demand sets DS

n ,

and parameters νS
nk. Let p̂ denote the equilibrium transfer in each of the two

examples of section 2.4.2 and let p = (0, p̂). The transfer p̂ is transformed into

the following transfers pk1,k2,l1,l2
n that correspond to decisions (k1, k2, l1, l2).{
pk1,k2,l1,l2

1 = bk1,l1
1 + bl1,l2 − pl2

pk1,k2,l1,l2
2 = bk2,l2

2 + pl2
(2.6.24)

In both examples, there are only two non-empty demand sets DS
n in each

class n = 1, 2. Let’s consider the first example (Figures 2.4.7 and 2.4.8). Let
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Da
n and Db

n, n = 1, 2, denote the non-empty demand sets in the example.

The four sets are

Da
1 = [0, x1] Da

2 = [0, x2]

Db
1 = [x1, ϑ1] Db

2 = [x2, ϑ2]

Let Sa
n and Sb

n, n = 1, 2, denote the sets of decisions that correspond to the

demand sets in class n. The sets of decisions are

Sa
1 = {k : k = (k1 = 0, k2 − any, l1 = 0, l2 = 0)}

Sb
1 = {k : k = (k1 = 1, k2 − any, l1 = 1, l2 = 1)}

Sa
2 = {k : k = (k1 − any, k2 = 0, l1 − any, l2 = 0)}

Sb
2 = {k : k = (k1 − any, k2 = 1, l1 − any, l2 = 1)}

The corresponding non-zero40 parameters νS
nk are

ν
Sa

1

1,(k1=0,k2=0,l1=0,l2=0) = 1 ν
Sa

2

2,(k1=0,k2=0,l1=0,l2=0) = 1

ν
Sb

1

1,(k1=1,k2=1,l1=1,l2=1) = 1 ν
Sb

2

2,(k1=1,k2=1,l1=1,l2=1) = 1

Let’s consider now the second example (Figures 2.4.9 and 2.4.10). Let Da
n

and Db
n, n = 1, 2, denote the non-empty demand sets in the example. The

four sets are
Da

1 = [0, xr
1] Da

2 = [0, x2]

Db
1 = [xr

1, ϑ1] Db
2 = [x2, ϑ2]

Let Sa
n and Sb

n denote the sets of decisions that correspond to the demand

sets in class n. The sets of decisions are

Sa
1 = {k : k = (k1 = 0, k2 − any, l1 = 0, l2 = 0)}

Sb
1 = {k : k = (k1 = 1, k2 − any, l1 = 1, l2 − any)}

Sa
2 = {k : k = (k1 − any, k2 = 0, l1 − any, l2 = 0)}

Sb
2 = {k : k = (k1 − any, k2 = 1, l1 − any, l2 = 1)}

The corresponding non-zero parameters νS
nk are

ν
Sa

1

1,(k1=0,k2=0,l1=0,l2=0) = 1 ν
Sa

2

2,(k1=0,k2=0,l1=0,l2=0) =
µ1([0,xr

1])

µ2([0,x2])

ν
Sb

1

1,(k1=1,k2=0,l1=1,l2=0) =
µ2([0,x2])−µ1([0,xr

1])

µ1([xr
1,ϑ1])

ν
Sa

2

2,(k1=1,k2=0,l1=1,l2=0) =
µ2([0,x2])−µ1([0,xr

1])

µ2([0,x2])

ν
Sb

1

1,(k1=1,k2=1,l1=1,l2=1) = µ2([x2,ϑ2])

µ1([xr
1,ϑ1])

ν
Sb

2

2,(k1=1,k2=1,l1=1,l2=1) = 1

40For any other decisions in the sets the parameters are zero.
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In both cases it can be directly verified that the demand sets correspond

to the transfers given in 2.6.24 and that the mass balance 2.6.22 condition

holds.



Chapter 3

Extensions of MK
N=2

3.1 Introduction

In this Chapter, I extend the N-lateral K-decision matching model introduced

in Chapter 2 in two directions by relaxing some of the restrictions of the model

when N = 2. In each extension of the bilateral model, I consider a bilateral

matching model with K decisions. In the first extension of the bilateral

model, the surplus generated in a match has a more general form than that

considered in the first essay. I derive some sufficient conditions and some

necessary conditions under which there exists an equilibrium matching which

is positive assortative. Specifically, I consider a matching model in which

there are two classes of agents, the types of the agents are one-dimensional,

and the surplus generated in a match has a general form as a function of

the types of the agents and the decision made in the match (in particular, it

may be non-separable in the types of the agents). I show that if (1) for any

decision the types of the agents are complementary to each other and (2)

the type of an agent is complementary to the decisions made in the match,

then there exists an equilibrium matching that is positive assortative. In the

second extension of the bilateral model, the utility of an agent in a match has

a more general form than that considered in the first essay. Specifically, the

71
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utility of an agent in a match depends on his type, the type of his partner,

decision made in the match, and some random component. I show that,

under certain conditions, the equilibrium exists and is unique and I discuss

how the equilibrium can be constructed numerically.

3.2 Assortative Matching

The previous bilateral matching literature offers some sufficient conditions

that guarantee positive assortative matching in equilibrium. In this section,

I provide some necessary conditions that are implied by positive assortative

matching as well as some sufficient conditions that guarantee positive as-

sortative matching in a bilateral matching model that extends the bilateral

model MK
N=2 introduced in chapter 2. Thus, I derive the analogue of results

from the previous bilateral matching literature in the case that the surplus

function depends on the matched types as well as the decision made in the

match.

In contrast with chapter 2, I assume in this section that there are only

N = 2 classes of agents and that the types of the individuals are one-

dimensional. In common with chapter 2, there is a continuum of types of

agents in each class and the agent’s choice of a partner depends on the de-

cision made in the match. I extend the bilateral model by allowing that the

choice of a partner depends also on the types of the matched individuals.

I find that the following conditions are sufficient to imply that positive

assortative matching maximizes the aggregate surplus.

• For each decision the surplus function is supermodular.

• The extra surplus generated by increasing an agent’s type increases in

decisions.
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The first condition can be interpreted as complementarity between the

types of the agents conditional on a given decision. The second condition

can be interpreted as complementarity between the type of an agent and

the decision made in the match. I also provide necessary conditions that are

implied when positive assortative matching maximizes the aggregate surplus.

3.2.1 Model Set-Up

In this section, I describe a bilateral one-to-one matching problem with trans-

ferrable utility and one-dimensional types of agents. Let x ∈ R denote the

type of a male and y ∈ R denote the type of a female. The distribution of

male types is denoted by µX and that of female types by µY . A matching

between male and female types is a function m : R → R that satisfies the

following mass balance condition

for any E ⊂ R : µ1(m
−1(E)) = µ2(E) (3.2.1)

Whenever y = m(x) I interpret it as a match between a type x male

and a type y female. If a male of type x is matched to a female of type

y, the pair generates a surplus u(x, y). Results from the standard bilateral

matching literature (for example, [2]) guarantee that equilibrium matching

m(·) can be constructed as a solution of the following planner’s constrained

maximization problem

W = max
m(·)

∫
R

u(x, m(x))dµ1(x) (3.2.2)

subject to the constraint 3.2.1 on the matching function. Objective function

W is the aggregate surplus generated in all matches.

I consider a surplus function of the form

u(x, y) =
K

max
k=1

[uk (x, y)] (3.2.3)
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That is, the surplus depends in a general way on both the types of the agents

and the decision made in the match.

A matching m(·) is positive assortative if m(·) is a nondecreasing function

of x. In the next two sections I derive sufficient conditions and necessary con-

ditions for positive assortative matching to maximize the aggregate surplus

function.

3.2.2 Sufficient Conditions for Positive Assortative Match-
ing

In this section, I derive sufficient conditions that guarantee that positive

assortative matching maximizes the aggregate surplus. In [2] it is shown

that one such sufficient condition is supermodularity of the surplus function.

A surplus function is supermodular if for any x′′ > x′ and y′′ > y′

u(x′′, y′′) + u(x′, y′) ≥ u(x′′, y′) + u(x′, y′′)

The supermodularity of the functions uk (x, y) does not guarantee super-

modularity of the function u (x, y). To describe sufficient conditions for the

supermodularity of u (x, y) I introduce first the following definitions. Let Akl

denote the set of pairs (x, y) such that

Akl =
{
(x, y) ∈ R2 : uk (x, y) ≥ ul (x, y)

}
(3.2.4)

That is, Akl is the set of pairs (x, y) of agent-types that prefer decision k over

decision l if matched. The following assumption imposes some regularity

conditions on the sets Akl.

Assumption 3.2.1 For any x and any pair (k, l) there exists a unique so-

lution y = ykl(x) of the equation

uk (x, y) = ul (x, y) (3.2.5)
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For each k and l, the function ykl(x) is a continuous function of x.

The pairs (x, ykl(x)) describes the boundary between the sets Akl and Alk.

Lemma provides sufficient conditions for supermodularity of the function

u(x, y).

Lemma 3.2.1 Suppose that Assumption 3.2.1 holds. If for any k = 1 . . . K,

the function uk(x, y) is supermodular and the functions ykl(x) are nonin-

creasing in x for all k and l, then the function u(x, y) = maxK
k=1 uk(x, y)

is supermodular and positive assortative matching maximizes the aggregate

surplus.

The proof is in the Appendix1.

In the case that the components of the surplus function satisfy

uk(x, y) = ak
1x + ak

2y + ak
0 (3.2.6)

the conditions of Lemma 3.2.1 can be simplified. Each function uk(x, y) is

supermodular since the second partial cross derivative is zero2. Therefore,

the surplus function is supermodular when each function y = ykl(x), defined

in 3.2.5, is nonincreasing with respect to x. When the surplus functions

satisfy 3.2.6 the equation 3.2.5 is satisfied when

ak
1x + ak

2y + ak
0 = al

1x + al
2y + al

0 (3.2.8)

1The result is proved only for a finite number of decisions. However, it can be easily
extended for the case when k ∈ [k, k]. Suppose that the surplus function is u(x1, x2) =
maxk∈[k,k] u(x1, x2, k), where u(x1, x2, k) is continuous in its arguments. The function can
be approximated arbitrary close by a function un(x1, x2) = maxk∈Kn

u(x1, x2, k), where
Kn ∈ [k, k] is some finite set of elements. Applying Lemma 3.2.1 to the functions un(x1, x2)
and taking the limit I can prove the result for the function u(x1, x2).

2A standard sufficient condition for the supermodularity of a surplus function u(x, y)
is

d2u(x, y)
dxdy

≥ 0 (3.2.7)
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From equation 3.2.8 I find

ykl(x) =
al

1 − ak
1

ak
2 − al

2

x +
al

0 − ak
0

ak
2 − al

2

(3.2.9)

From 3.2.9 it follows that for any k and l the functions ykl(x) are non-

increasing if and only if the following condition is satisfied. For any indices

k > l

ak
1 ≥ al

1 and ak
2 ≥ al

2 (3.2.10)

Thus, in the case that 3.2.6 holds, positive assortative matching follows

from 3.2.10. When 3.2.6 fails to hold, an analogous result hold if 3.2.10 is

replaced with inequalities of the partial derivatives of uk.

Proposition 3.2.1 Suppose that Assumption 3.2.1 holds. Suppose also that

for each k the function uk(x, y) is supermodular and that for any indices

k > l

∂uk

∂x
(x, y) ≥ ∂ul

∂x
(x, y) and

∂uk

∂y
(x, y) ≥ ∂ul

∂y
(x, y) (3.2.11)

for all x and y. Then the surplus function u(x, y) is supermodular and the

positive assortative matching maximizes the aggregate surplus.

The proof is in the Appendix. Proposition 3.2.1 also follows from the

results in Topkins, D., 1998 ([36], chapter 2, Theorem 2.7.6). I interpret

condition 3.2.11 in Proposition 3.2.1 as complementarity between each type

and decisions. More precisely, suppose that an increase in index k = 1, . . . , K

corresponds to some ordering of the set of decisions from low level to high

level decisions. Then condition 3.2.11 means that as the level of decision

increases, the marginal change in surplus that corresponds to a marginal

change in type also increases.
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3.2.3 Necessary Conditions for Positive Assortative Match-
ing

In this section I provide necessary conditions for positive assortative matching

to maximize the aggregate surplus. The conditions demonstrate the idea that

both complementary between types and complementary between each type

and decisions are important in Proposition 3.2.1. I note first that positive

assortative matching may maximize the aggregate surplus even when the

surplus function u(x, y) is submodular at some points (x, y). However, I show

in Lemma 3.2.2 that the surplus maximizing matching is positive assortative

then the surplus function must be supermodular at the points (x, y) such

that y = m(x).

Lemma 3.2.2 Suppose that the measures µX and µY are continuous and

that the matching y = m (x) maximizes the aggregate surplus. Suppose fur-

ther that there exists a matched pair õ = (x̃, ỹ) such that ỹ = m(x̃ and values

xa < x̃ and xb > x̃ such that for any x− ∈ [xa, x̃) , and x+ ∈
(
x̃, xb

]
the

following inequality holds:

u
(
x−, y−

)
+ u

(
x+, y+

)
< u

(
x−, y+

)
+ u

(
x+, y−

)
(3.2.12)

where y− = m (x−) and y+ = m (x+). Then y = m (x) is not positive

assortative.

The proof is in the Appendix. Next I show that, under some regularity

conditions, if the types are complementary conditional on decisions but the

functions ykl are increasing for all k, l (so that complementarity between

each type and decisions fails), then positive assortative matching does not

maximize the aggregate surplus. First, I impose some regularity conditions

on the surplus functions.
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Assumption 3.2.2 Suppose that the functions uk (x, y) are continuously dif-

ferentiable for each k. Suppose also that for any k and l neither of the fol-

lowing systems has a solution.{
uk (x, y) = ul (x, y)
∂uk(x,y)

∂x
= ∂ul(x,y)

∂x

or

{
uk (x, y) = ul (x, y)
∂uk(x,y)

∂y
= ∂ul(x,y)

∂y

(3.2.13)

Assumption 3.2.2 rules out the curves ykl that have slope either zero or

infinity at some points so that functions ykl similar to those illustrated in

Figure 3.2.1 are not possible.

x

y

x

y

y = ykl(x)
y = ykl(x)

Figure 3.2.1 Examples of ykl(x) functions that are ruled out by Assumption 3.2.2.

Now I am ready to formulate the result that gives sufficient conditions

when positive assortative matching does not maximize the aggregate surplus.

Proposition 3.2.2 Suppose that Assumption 3.2.2 holds and that the func-

tions ykl(x) are increasing functions of x. Suppose also that the measures

µX and µY are continuous. Then positive assortative matching y = m (x)

maximizes the aggregate surplus only if a common decision is made by all the

matched pairs.

The proof is in the Appendix.
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3.3 Appendix

3.3.1 Positive Assortative Matching: Sufficient Condi-
tions

Lemma 3.2.1 Suppose that Assumption 3.2.1 holds. If for any k =

1 . . . K, the function uk(x, y) is supermodular and the functions ykl(x) are

nonincreasing in x for all k and l, then the function u(x, y) = maxK
k=1 uk(x, y)

is supermodular and positive assortative matching maximizes the aggregate

surplus.

Proof. I prove Lemma 3.2.1 by induction. If K = 1 then the result

is obviously true. Suppose that the result is shown for the utility function

u(x, y) = maxK̃
k=1 uk(x, y) for any K̃ in the range 1, . . . , K − 1. I show then

that the result is true for K number of decisions. Let’s pick four arbitrary

points x′, x′′, y′, y′′ such that x′′ > x′ and y′′ > y′. I need to show that

u(x′′, y′′) + u(x′, y′) ≥ u(x′′, y′) + u(x′, y′′). Let’s consider a square with the

nodes at the points

o1 = (x′, y′) , o2 = (x′, y′′) , o3 = (x′′, y′′) , o4 = (x′′, y′)

Let’s also consider the graph of the function ykl (x) for some arbitrary

indices k and l. I assume, without loss of generality, that the set Akl lies

above the graph of the function ykl (x) and the set Alk lies below the graph

of the function ykl (x). Let u−k (x, y) denote the surplus function in the case

that decision k is not available for a matched pair.

u−k (x, y) = max
k̃ 6=k

uk̃(x, y)

If the function ykl (x) is nonincreasing then all possible intersections of the

graph and the square can be summarized in the following three cases.
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case1: the curve ykl (x) does not intersect the square or the curve goes through

either node o1 or node o3. The case is shown in the picture below.

x

y

o1

o2

o4

o3

ykl(x) : uk(x, y) = ul(x, y)

It follows from the definition of the set Akl that uk (x, y) ≥ ul (x, y)

at points o1, o2, o3, and o4. Therefore u (x, y) = u−l (x, y) at all four

points. Since by induction u−l(o1)+u−l(o3) ≥ u−l(o2)+u−l(o4) the same

inequality holds for the function u (x, y) : u(o1)+u(o3) ≥ u(o2)+u(o4).

case2: the curve ykl (x) intersects either edges o1o2 and o1o4 or edges o2o3 and

o3o4. The graph may intersect the edges at the nodes. The following

pictures demonstrates the case.

x

y

o1

o2

o4

o3

x

y

o1

o2

o4

o3

Let’s consider the left picture. Since uk (x, y) ≥ ul (x, y) at points

o2, o3, and o4 I obtain u (x, y) = u−l (x, y) at these three points, that is

u (o2) = u−l (o2) , u (o3) = u−l (o3) , and u (o4) = u−l (o4). At point o1

I obtain u (o1) ≥ u−l (o1). It follows from the inequalities that u(o1) +

u(o3) ≥ u−l(o1) + u−l(o3)
by induction

≥ u−l(o2) + u−l(o4) = u(o2) + u(o4).

The right picture is analyzed similarly.
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case 3: Let’s assume that the curve ykl (x) either intersects the edges o2o3 and

o1o4 or the edges o1o2 and o3o4. The following pictures illustrates this

case.

x

y

x

y

o1

o2

o4

o3

o5

o6

o1

o2

o4

o3

o6 o5

Let’s consider the left picture. Let point o6 denote the intersection of

the graph ykl (x) and the edge o2o3. The point o5 belongs to the edge

o1o4 and has the same x coordinate as the point o6. In the first case I

have shown that

u (o1) + u (o6) ≥ u (o2) + u (o5) (3.3.1)

In the second case I have shown that

u (o5) + u (o3) ≥ u (o6) + u (o4) (3.3.2)

Summing up the inequalities 3.3.1 and 3.3.2 I obtain

u (o1) + u (o3) ≥ u (o2) + u (o4)

Similar argument applies to the right picture. This completes the proof.

Proposition 3.2.1 Suppose that Assumption 3.2.1 holds. Suppose also

that for each k the function uk(x, y) is supermodular and that for any indices

k > l

duk

dx
(x, y) ≥ dul

dx
(x, y) and

duk

dy
(x, y) ≥ dul

dy
(x, y) (3.3.3)
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for all x and y. Then the surplus function u(x, y) is supermodular and the

positive assortative matching maximizes the aggregate surplus.

Proof. By definition, the function ykl(x) is a solution of the equation

uk(x, ykl(x)) = ul(x, ykl(x)) (3.3.4)

Taking derivative of the left- and right-hand sides in 3.3.4 and rearranging

the terms I obtain
dykl

dx
=

duk

dx
− dul

dx
dul

dy
− duk

dy

≤ 0 (3.3.5)

Therefore, the functions ykl(x) are nonincreasing.

3.3.2 Positive Assortative Matching: Necessary Con-
ditions

Lemma 3.2.2 Suppose that the measures µX and µY are continuous and

that the matching y = m (x) maximizes the aggregate surplus. Suppose fur-

ther that there exists a matched pair õ = (x̃, ỹ) such that ỹ = m(x̃ and values

xa < x̃ and xb > x̃ such that for any x− ∈ [xa, x̃) , and x+ ∈
(
x̃, xb

]
the

following inequality holds:

u
(
x−, y−

)
+ u

(
x+, y+

)
< u

(
x−, y+

)
+ u

(
x+, y−

)
(3.3.6)

where y− = m (x−) and y+ = m (x+). Then y = m (x) is not positive

assortative.

Proof. Suppose that matching y = m (x) is positive assortative. With-

out loss of generality, I assume that xa and xb are such that µX ([xa, x̃)) =

µX

((
x̃, xb

])
> 0. Let ya = m (xa) and yb = m

(
xb
)
.

I show that the pairs can be rematched so that the total surplus will

strictly increase. Let’s consider the following matching y = m̃ (x). Outside
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the interval
[
xa, xb

]
matching function m̃ (x) coincides with m (x) . The in-

terval [xa, x̃) is rematched away from [ya, ỹ) to
(
ỹ, yb

]
so that matching m̃ :

[xa, x̃) →
(
ỹ, yb

]
is positive assortative and satisfies the mass balance con-

dition on the interval [xa, x̃). Finally, I define m̃ (x) on the interval
(
x̃, xb

]
by the following formula: m̃ (x) = m (m̃−1 (m (x))). The matching m̃ (x)

is shown with the dashed line in Figure 3.3.1. I know that mapping m (x)

satisfies the mass balance condition and that m̃ (x) is a one-to one mapping

that satisfies mass balance condition on the interval [xa, x̃). As a result,

m̃−1 :
(
ỹ, yb

]
→ [xa, x̃) is defined properly and satisfies mass balance condi-

tion. The function m̃ (x) :
(
x̃, xb

]
→ [ya, ỹ) also has mass balance condition

property as a composition of two functions with this property.

x

y

x̃

ỹ

xa

ya

xb

yb

x−

y−

x+

y+

õ

o1

o2 o3

o4

y = m(x)

y = m(x)
y = m̃(x)

Figure 3.3.1 The positive assortative matching m(x) is shown with a solid line. The

alternative matching function m̃(x) is shown with the dashed line. Outside the interval[
xa, xb

]
the two matching functions coincide.

I now show that the matching function m̃ (x) generates a strictly higher

surplus than m (x).

Let for any x− ∈ [xa, x̃) take y− = m (x−) , y+ = m̃ (x−) , and x+ =

m−1 (y+). Then from the definition of m̃ (x) I obtain m̃ (x+) = m (x−) = y−.

Therefore, from inequality 3.2.12, it follows that

u
(
x−, m

(
x−
))

+ u
(
x+, m

(
x+
))

< u
(
x−, m̃

(
x−
))

+ u
(
x+, m̃

(
x+
))
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Integrating the inequality from xa to x̃ with respect to measure µX I

obtain∫ x̃

xa

u
(
x−, m

(
x−
))

dµX

(
x−
)

+

∫ x̃

xa

u
(
x+, m

(
x+
))

dµX

(
x−
)

<∫ x̃

xa

u
(
x−, m̃

(
x−
))

dµX

(
x−
)

+

∫ x̃

xa

u
(
x+, m̃

(
x+
))

dµX

(
x−
)

Next I change the variable and the limits of integration in the second

terms in the left and right hand sides of the inequality. Also from the mass

balance condition I obtain dµX (x−) = dµX (x+). After making the changes

I obtain the following inequality.∫ x̃

xa

u
(
x−, m

(
x−
))

dµX

(
x−
)

+

∫ xb

x̃

u
(
x+, m

(
x+
))

dµX

(
x+
)

<

<

∫ x̃

xa

u
(
x−, m̃

(
x−
))

dµX

(
x−
)

+

∫ xb

x̃

u
(
x+, m̃

(
x+
))

dµX

(
x+
)

that is, a strictly higher total surplus is generated with matching function

m̃ (x) than m (x) and therefore m (x) is not maximizing the aggregate surplus.

Proposition 3.2.2 Suppose that Assumption 3.2.2 holds and that the

functions ykl(x) are increasing functions of x. Suppose also that the measures

µX and µY are continuous. Then positive assortative matching y = m (x)

maximizes the aggregate surplus only if a common decision is made by all the

matched pairs.

Proof. Suppose that the matching is positive assortative but not all

matched pairs make a common decision. Then there exists a point õ = (x̃, ỹ)

such that the matched pairs with types x < x̃ and y < ỹ make decision k

and matched pairs with types x > x̃ and y > ỹ make decision l 6= k in some

neighborhood of the point õ. The point õ must lie at the intersection of the
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curves y = m (x) and y = ykl (x). Figures 3.3.2 and 3.3.3 illustrate the two

general possibilities for the positive assortative matching in the neighborhood

of the point õ.

x

y

x̃

ỹ

x−

y−

x+

y+

õ

ykl(x)
y = m(x)uk > ul

ul > uk

Figure 3.3.2 The matching func-
tion y = m(x) intersects the line
y = ykl(x) from above.

x

y

x̃

ỹ

x−

y−

x+

y+

õ

ykl(x)

y = m(x)uk > ul

ul > uk

Figure 3.3.3 The matching func-
tion y = m(x) intersects the line
y = ykl(x) from below

From Figure 3.3.2 we can see that the following inequality holds

∂uk

∂y
(x̃, ỹ) ≥ ∂ul

∂y
(x̃, ỹ) (3.3.7)

Since (x̃, ỹ) lies on the graph ykl (x) I obtain uk (x̃, ỹ) = ul (x̃, ỹ). Therefore,

by Assumption 3.2.2, the inequality 3.3.7 is strict. Since both functions

uk (x, y) and ul (x, y) are continuously differentiable I can choose a small

enough neighborhood Nx̃ of the point x̃ so that the following inequality holds

for any points x− < x̃ and x+ > x̃ that belong to Nx̃.

uk (x−, y+)− uk (x−, y−)

y+ − y−
>

ul (x+, y+)− ul (x+, y−)

y+ − y−

where y− = m (x−) and y+ = m (x+). Rearranging the terms I obtain

uk
(
x−, y−

)
+ ul

(
x+, y+

)
< uk

(
x−, y+

)
+ ul

(
x+, y−

)
The inequality can be rewritten as
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u
(
x−, y−

)
+ u

(
x+, y+

)
< u

(
x−, y+

)
+ u

(
x+, y−

)
Therefore, by Lemma 3.2.2, the positive assortative matching function y =

m(x) does not maximize the aggregate surplus.

Analogous arguments can be used to show that positive assortative matching,

illustrated in Figure 3.3.3, does not maximize the aggregate surplus.

3.4 Stochastic Matching Model

In this chapter, I propose an application of the bilateral model MK
2 intro-

duced in chapter 2. As in the standard MK
2 model, the utility to an agent

depends on the match she forms and on the decision taken within the match.

In this section’s model, an idiosyncratic component which is both match and

decision dependent is added to the agent’s utility. This modification is meant

to capture more realistic preferences over both matches and decisions.

After describing the model in section 3.4.1 I show that if the support of

the idiosyncratic shock is unbounded then a unique equilibrium exists in this

model. I also provide a method to compute the equilibrium transfers.

3.4.1 Model Set-Up

Let the set of male types be X1 = {x1
1, . . . , x

I
1}, the set of female types be

X2 = {x1
2, . . . , x

J
2}, and the set of decisions be K = {1, . . . , K}. Note that

unlike the model MK
2 of chapter 2 I assume a finite number of agents’ types.

Let µ1 = (µ1
1, . . . , µ

I
1) and µ2 = (µ1

2, . . . , µ
J
2 ) denote the distributions of types

of males and females. Whenever decision k is made in a match between a

male of type xi
1 and a female of type xj

2, the two agents in the match obtain

the following utilities.
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ũk
1,ij = uk

1,ij − pk
ij + ηk

1,ij (3.4.1)

ũk
2,ij = uk

2,ij + pk
ij + ηk

2,ij (3.4.2)

where uk
1,ij and uk

2,ij represent the deterministic components of the agents’

utilities, pk
ij is a transfer from the male to the female in the match, and ηk

1,ij

and ηk
2,ij are the idiosyncratic components of the agents’ utilities. I assume

that ηk
1,ij and ηk

2,ij have continuously differentiable cumulative distribution

functions, denoted by F1,ij(z) and F2,ij(z). Moreover, the random variables

ηk
g,ij are independent for g = 1, 2, i ∈ {1, ..., I}, j ∈ {1, ..., J}, and k ∈

{1, ..., K}. Unmatched males of type xi
1 obtain utility r1,i and unmatched

females of type xj
2 obtain utility r2,j.

I denote the I × J matrix of transfers
{
pk

ij

}
as p. Let τ k

1,ij(p) denote the

probability that the utility of a male of type xi
1 attains its maximum value

when he is matched with a female of type xj
2 and decision k is made in the

match. Analogously, let τ k
2,ij(p) denote the probability that the utility of

a female of type xj
2 attains its maximum value when she is matched with

a male of type xi
1 and decision k is made in the match. In addition, let

τ 0
1,i(p) denote the probability that a male of type xi

1 best option is to stay

unmatched. Probability τ 0
2,j(p) is defined similarly for female agents. The

equilibrium of the model is defined as follows.

Definition 3.4.1 A matrix of transfers p is an equilibrium if for all i, j, and

k

µi
1τ

k
1,ij(p) = µj

2τ
k
2,ij(p) (3.4.3)

The above notion of equilibrium is analogous to Definition 2.6.1 in chapter

2. Given the transfers p, µi
1τ

k
1,ij(p) is the measure of males of type i that
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demand to match with females of type j and to take decision k within the

match. Similarly, µj
2τ

k
2,ij(p) is the measure of females of type j that demand

to match with males of type i and to take decision k within the match.

The usual mass balance condition requires that, in equilibrium, these two

measures are equal. Note that the requirement that every agent makes an

optimal choice is already embedded in the definition of τ k
g,ij(p).

3.4.2 Existence and Uniqueness of the Equilibrium

In this section, I derive sufficient conditions for the existence and uniqueness

of the equilibrium. To do so, in the next two lemmas I establish some useful

properties of the probabilities τ k
g,ij(p). The proofs of both results are in the

Appendix.

Lemma 3.4.1 For each i and for any (j̃, k̃) 6= (j, k)

dτ k
1,ij(p)

dpk̃
ij̃

=
dτ k̃

1,ij̃
(p)

dpk
ij

(3.4.4)

Analogously, for each j and for any (̃i, k̃) 6= (i, k)

dτ k
2,ij(p)

dpk̃
ĩ,j

=
dτ k̃

2,̃ij
(p)

dpk
ij

(3.4.5)

Lemma 3.4.2 The functions τ k
1,ij(p) and τ k

2,ij(p) have the following proper-

ties:

1. τ k
1,ij(p) is decreasing in pk

ij (τ k
2,ij(p) is increasing in pk

ij)

2. τ 0
1,i(p) is increasing in pk

ij (τ 0
2,j(p) is decreasing in pk

ij)

3. τ k
1,ij(p) is increasing in pk̃

ij̃
for any (j̃, k̃) 6= (j, k) (τ k

2,ij(p) is de-

creasing in pk̃
ĩj

for any (̃i, k̃) 6= (i, k))
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4.
∑

j̃,k̃

dτk
1,ij(p)

dpk̃
ij̃

≤ 0 (
∑

ĩ,k̃

dτk
2,ij(p)

dpk̃
ĩj

≥ 0). Moreover, if ri
1 > −∞ and

rj
2 > −∞ for any i and j, and for any i, j, k and g support of ηk

g,ij is

(−∞,∞), then the inequalities are strict.

In the Appendix, using Lemmas 3.4.1 and 3.4.2 I provide a proof by

construction of the main result that an equilibrium exists and is unique in

this model.

Theorem 3.4.1 Suppose that, for any g, i, j and k, the distributions of ηk
g,ij

are continuous on the support (−∞,∞). Also suppose that ri
1 > −∞ and

rj
2 > −∞ for any i and j. There exists a unique equilibrium of the model.

Moreover, the equilibrium can be constructed as a limit of the sequence

p(n+1) = p(n) + λ
[
µi

1τ
k
1,ij(p

(n))− µj
2τ

k
2,ij(p

(n))
]

n = 1, 2, . . . (3.4.6)

for some sufficiently small λ > 0.

Beyond establishing existence and uniqueness of equilibrium Theorem

3.4.1 also provides a simple method for computing the equilibrium transfers.

3.4.3 Appendix

Next, I formulate some results that complete the proof of the existence and

uniqueness of the equilibrium of the general model in this chapter.

Existence and Uniqueness of the Solution of a System of Nonlinear
Equations

There is an extensive literature on this subject some of which, [26], is men-

tioned in the references. However, none of the results can be applied directly

in this case. Thus, I need to manipulate the proofs in the literature. Below

I provide conditions under which (i) there exists a unique solution of the
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system and (ii) the solution can be obtained as a fixed point of a properly

defined contraction mapping.

The notation, that I use in this subsection, is independent from the nota-

tion in the rest of this paper. The results in this subsection are general and

they are the reformulation of standard results to be applied in this particular

case.

Theorem 3.4.2 Suppose that a vector function hi(p1, . . . , pn), i = 1 . . . n is

continuously differentiable for each i and has the following properties.

1. For any i, j and any p

dhi

dpi

< 0,
dhi

dpj

> 0 for j 6= i,

∣∣∣∣dhi

dpi

∣∣∣∣ >∑
j 6=i

dhi

dpj

(3.4.7)

2. There exists a constant A > 0 such that for and any vector p such that

maxi | pi |= A there exists index j such that

either hj(p) < 0 and pj > 0
or hj(p) > 0 and pj < 0 (3.4.8)

Then there exists a unique solution of the system of equations

hi(p1, . . . , pn) = 0, i = 1, . . . , n (3.4.9)

Note: condition dhi

dpj
> 0 for j 6= i is not essential but it simplifies the

proof of the theorem.

Let define set S as

S = {p : |pi| ≤ A for all i} (3.4.10)

and consider the following metric ρ on Rn
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ρ(p(1), p(2)) = max
i

∣∣∣p(1)
i − p

(2)
i

∣∣∣ (3.4.11)

The theorem follows from the following proposition.

Proposition 3.4.1 The transformation T (p) = (T1(p), . . . , Tn(p) defined as

Ti(p) =


pi + λhi(p) if −A ≤ p + λhi(p) ≤ A
−A if p + λhi(p) ≤ −A
A if A ≤ p + λhi(p)

(3.4.12)

is a contraction mapping of the metric space (S, ρ) into itself for some λ > 0.

Proof. By construction, T maps S into itself. Transformation T is a

composition, T = T 1 ◦ T 2, of two transformations:

T 2
i (p) = pi + λhi(p) (3.4.13)

and T 1 is a projection on set S, T 1
i (p) = max(−A, min(A, pi)). From the

definition of T 1 it follows directly that ρ(T 1(p(1)), T 1(p(2))) ≤ ρ(p(1), p(2)).

Therefore, to show that T is a contraction mapping, it is sufficient to show

that T 2 is a contraction mapping.

To show that T 2 is a contraction mapping, I need to show that there

exists 0 < α < 1 such that for any p(1) ∈ S and p(2) ∈ S the following

inequality holds: ρ(T 2(p(1)), T 2(p(2))) ≤ αρ(p(1), p(2)). Consider

α = 1− λ min
i,p̃∈S

[∣∣∣∣dhi

dpi

(p̃)

∣∣∣∣−∑
j 6=i

∣∣∣∣dhi

dpj

(p̃)

∣∣∣∣
]

(3.4.14)

Since
∣∣∣dhi

dpi
(p̃)
∣∣∣ −∑j 6=i

∣∣∣dhi

dpj
(p̃)
∣∣∣ > 0 for any p̃ ∈ S and set S is a compact I

obtain α < 1. Since dhi

dpi
< 0 and dhi

dpj
≥ 0 for j 6= i I can rewrite 3.4.14
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as α = 1 + λ maxi,p̃∈S

∑
j

dhi

dpj
(p̃). I can also choose λ small enough so that

1 + λ maxp̃∈S
dhi

dpi
(p̃) > 0.

Pick some arbitrary points p(1) ∈ S and p(2) ∈ S. For any i there exists a

point3 p̃ = tp(1) + (1− t)p(2) for some t ∈ [0, 1] such that

T 2
i (p(2))− T 2

i (p(1)) =
(
p

(2)
i − p

(1)
i

)
+ λ

∑
j

dhi(p̃)

dpj

(
p

(2)
j − p

(1)
j

)
(3.4.15)

which can be rewritten as

∣∣T 2
i (p(2))− T 2

i (p(1))
∣∣ =

∣∣∣∣∣
(

1 + λ
dhi(p̃)

dpi

)(
p

(2)
i − p

(1)
i

)
+ λ

∑
j 6=i

dhi(p̃)

dpj

(
p

(2)
j − p

(1)
j

)∣∣∣∣∣
≤

∣∣∣∣∣
(

1 + λ
dhi(p̃)

dpi

+ λ
∑
j 6=i

dhi(p̃)

dpj

)∣∣∣∣∣ ρ(p(1), p(2)) ≤ αρ(p(1), p(2)) (3.4.16)

and this proves the proposition.

The proposition shows that T (p) is a contraction mapping on (S, ρ).

Therefore, there exists a unique fixed point p̂ of the transformation T . That

is, there exists a unique point in S such that T (p̂) = p̂. This, however, does

not prove Theorem 3.4.2 yet. The fixed point p̂ of the transformation T can

belong to the boundary of the set S in which case it may not be the fixed

point of the transformation T 1. To prove the theorem it is sufficient to show

that if A is such that condition 3.4.8 of Theorem 3.4.2 holds, then the fixed

point of T does not belong to the boundary of the set S.

Proof (of theorem 3.4.2). To prove the theorem it is sufficient to

show that there does not exist p̂ that belongs to the boundary of S and

T (p̂) = p̂. Let p̂ be some arbitrary point on the boundary of S. From the

second condition of the theorem it follows that either there exists j such that

hj(p) < 0 and pj > 0 or there exists j such that hj(p) > 0 and pj < 0. Let’s

3This statement is a simple extension of a standard result from calculus.
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assume that hj(p) < 0 and pj > 0 for some j (the other case is considered

analogously). Since T 2
j (p) = pj+λhj(p) > pj, we obtain Tj(p) = T 1

j ◦T 2
j (p) =

min(A, pj + λhj(p)) > pj. Therefore, T (p) 6= p. This proves the theorem.

Existence and Uniqueness of Equilibrium

Lemma 3.4.1 For each i and for any (j̃, k̃) 6= (j, k)

dτ k
1,ij(p)

dpk̃
ij̃

=
dτ k̃

1,ij̃
(p)

dpk
ij

(3.4.17)

Analogously, for each j and for any (̃i, k̃) 6= (i, k)

dτ k
2,ij(p)

dpk̃
ĩ,j

=
dτ k̃

2,̃ij
(p)

dpk
ij

(3.4.18)

Proof. I prove only equation 3.4.17. Equation 3.4.18 can be proved

analogously. I remind that

τ k
1,ij = Pr

(
ũk

1,ij ≥ max
(j′,k′) 6=(j,k)

ũk′

1,ij′

)
(3.4.19)

and

ũk
1,ij = uk

1,ij − pk
ij + ηk

1,ij (3.4.20)

Let’s fix the values of u
˜̃
k

i
˜̃
j
for (

˜̃
j,
˜̃
k) 6= (j, k) and (

˜̃
j,
˜̃
k) 6= (j̃, k̃) and let’s denote

A = max
(
˜̃
j,

˜̃
k) 6=(j,k)

(
˜̃
j,

˜̃
k) 6=(j̃,k̃)

u
˜̃
k

i
˜̃
j

(3.4.21)

Let’s consider the following sets.

Ck
1,ij =

{
(ηk

1,ij, η
k̃
1,ij̃

) : ũk
1,ij ≥ ũk̃

1,ij̃
and ũk

1,ij ≥ A
}

(3.4.22)

C k̃
1,ij̃

=
{

(ηk
1,ij, η

k̃
1,ij̃

) : ũk̃
1,ij̃

≥ ũk
1,ij and ũk̃

1,ij̃
≥ A

}
(3.4.23)

The sets Ck
1,ij and C k̃

1,ij̃
are illustrated in the figure below.
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-

6

�
�
�
�
�
�

ηk
1,ij

ηk̃
1,ij̃

Ck
1,ij

C k̃
1,ij̃

uk
ij − pk

ij + ηk
1,ij = uk̃

ij̃
− pk̃

ij̃
+ ηk̃

1,ij̃

uk
ij − pk

ij + ηk
1,ij = A

uk̃
ij̃
− pk̃

ij̃
+ ηk̃

1,ij̃
= A

Let’s now compare the change in the set C k̃
1,ij̃

as pk
ij is increased by some

small ε (Figure 3.4.1) with the change in the set Ck
1,ij as pk̃

ij̃
is decreased by

ε (Figure 3.4.2).

�
�
�
�
�
�

C k̃
1,ij̃

pk
ij ↑ ε

ε

�
�
�
�
�
�

��

Ck
1,ij

ε

pk̃
ij̃
↓ ε

@@I “T”

Figure 3.4.1 The left panel shows ex-
pansion of the set C k̃

1,ij̃
as pk

ij increases
by ε.

Figure 3.4.2 The right panel shows
contraction of the set Ck

1,ij as pk̃
ij̃

de-
creases by ε.

By definition,

τ k
1,ij = Pr

(
Ck

1,ij

)
and τ k̃

1,ij̃
= Pr

(
C k̃

1,ij̃

)
(3.4.24)

As I have shown, the change in the sets Ck
1,ij and C k̃

1,ij̃
, that corresponds

to the change in pk̃
ij̃

and pk
1,ij, is the same except the triangle “T” shown in

Figure 3.4.2. But the measure of the triangle “T” is of ε2 order and can

be ignored. This proves that conditional on the vector of random variables
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(
u

˜̃
k

i
˜̃
j

)
(
˜̃
j,

˜̃
k) 6=(j,k), (

˜̃
j,

˜̃
k) 6=(j̃,k̃)

the derivative of τ k
1,ij with respect to pk̃

ij̃
is equal to

the derivative of τ k̃
1,ij̃

with respect to pk
1,ij.

d Pr

(
Ck

g,ij

∣∣∣ (u
˜̃
k

i
˜̃
j

)
(
˜̃
j,

˜̃
k) 6=(j,k), (

˜̃
j,

˜̃
k) 6=(j̃,k̃)

)
dpk̃

ij̃

=

d Pr

(
C k̃

g,ij̃

∣∣∣ (u
˜̃
k

i
˜̃
j

)
(
˜̃
j,

˜̃
k) 6=(j,k), (

˜̃
j,

˜̃
k) 6=(j̃,k̃)

)
dpk

ij

(3.4.25)

Taking expectation of 3.4.25 with respect to u
˜̃
k

i
˜̃
j

for all (
˜̃
j,
˜̃
k) 6= (j, k) and

(
˜̃
j,
˜̃
k) 6= (j̃, k̃) I obtain 3.4.17. This proves the lemma.

Proposition 3.4.2 The functions τ k
1,ij(p) and τ k

2,ij(p) have the following

properties:

Proof. The proof of Lemma 3.4.1 can be used to show the first three

properties. The only nontrivial property4 is the last one,
∑

j̃,k̃

dτk
1,ij

dpk̃
ij̃

≤ 0. The

inequality can be proved by the following argument. By definition,

∑
j̃,k̃

τ k̃
1,ij̃

(p) + τ 0
1,i(p) ≡ 1 (3.4.26)

for any p. Taking the derivative of 3.4.26 with respect to pk
ij I obtain

∑
j̃,k̃

τ k̃
1,ij̃

(p)

dpk
ij

+
τ 0
1,i(p)

dpk
ij

= 0 (3.4.27)

But by Lemma 3.4.1

4the property
∑

ĩ,k̃

dτk
2,ij

dpk̃
ĩj

≥ 0 can be proved by the same argument
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dτ k̃
g,ij̃

(p)

dpk
ij

=
dτ k

g,ij

dpk̃
ij̃
(p)

(3.4.28)

and, therefore, substituting 3.4.28 into 3.4.27 I obtain

∑
j̃,k̃

τ k
1,ij

dpk̃
ij̃

+
τ 0
1,i(p)

dpk
ij

= 0 (3.4.29)

and inequality
∑

j̃,k̃

τk
1,ij

dpk̃
ij̃

≤ 0 follows from the inequality
τ0
1,i(p)

dpk
ij
≥ 0. Moreover,

if for any i, j and k support of ηk
1,ij is (−∞,∞), then

τ0
1,i(p)

dpk
ij

> 0. Therefore,∑
j̃,k̃

τk
1,ij

dpk̃
ij̃

< 0.



Chapter 4

Matching with Coordination
Frictions

4.1 Introduction

A variety of models has been proposed in the literature that analyze the

matches between workers and jobs that take place in the labor market. The

first examples of models which are still used as a standard framework to

describe the labor market are given in [32] (Shapley and Shubik, 1972) and

in [2] (Becker, 1973). In these papers, the labor market is modelled as an

assignment model and the solution of the assignment model is the equilib-

rium in the labor market. The model assumes no frictions in the economy.

Each worker can apply to any job in the economy and there is a centralized

mechanism that assigns workers to jobs.

There are many reasons to believe that these assumptions are not realistic

in practice. The predictions of this frictionless economy that are inconsistent

with empirical evidence are discussed in many papers that study a model with

some coordination frictions in the economy (like [33] (Shi, 2001) or [34],[35]

(Shimer, 1996, 2001). Coordination frictions may result in an inefficient

allocation of workers to firms. That is, in the presence of frictions, there may

97
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be too many applicants at some firms and too few at others. As a result, some

workers are not matched and some vacancies are not filled. In the papers

cited above and in the model of this chapter, there are three different sources

of coordination frictions. First, each worker can apply only to a single firm

in the economy. Therefore, if a worker does not obtain a job at the firm to

which he applied, he stays unmatched as he can not apply to a different firm.

Second, a worker does not observe the types of other workers and, therefore,

can not predict the choices of other workers perfectly. As a result, a firm can

receive too many or too few applications and, ex-post, some workers would

be better off if they had applied to a different firm. Finally, it is assumed

that workers use symmetric strategies so that each worker expects that all

workers of a given type choose a common application strategy. Since workers

can not coordinate their actions there may be too many applications to some

firms and too few to others.

The idea of frictions can be illustrated by the following simple exam-

ple. Let’s assume that there are two identical workers, two identical firms,

and each firm has a single available job vacancy (since workers are identical,

they know each other type and, therefore, there are no frictions related to

imperfect information). Each worker can apply only to a single firm. A co-

ordination mechanism would assign worker one to firm one and worker two

to firm two. In the absence of such coordination, however, worker one does

not know where worker two is applying. Assuming that both workers choose

a common uncoordinated strategy, it can be shown that the equilibrium out-

come is that each worker applies with probability 1
2

to each firm. Therefore

there is a 50% chance that both workers would apply to one and the same

firm.

Interest in matching models with coordination frictions has been largely
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motivated by the fact that the models seem to do a better job than those with-

out frictions in describing the facts that are observed in the labor market. The

literature began with the matching models in which workers and firms are

homogeneous [24] (Montgomery, 1991), [7] (Burdett, Shi, and Wright, 2001).

These models have been extended to include heterogeneous one-dimensional

types of firms and workers [35] (Shimer, 2001).

However, the assumption that the types of workers and firms are one-

dimensional makes it impossible in some cases to estimate the labor market

quantitatively. For example, if you model the flows of workers from one

geographic area to another, the assumption of one dimensional types would

be unrealistic (The types must include, at a minimum, the current geographic

location of a worker or a firm). In general, depending on questions being

asked, the types of workers may need to include such characteristics as age,

education, current geographical location, sex, marital status, or residence

status. Likewise, the firms’ types may include a variety of characteristics like

physical capital or geographical location.

I propose a model of a static labor market with coordination frictions, a

finite number of types available for each agent, a general form of heterogeneity

of firms and workers, and a finite number of job positions at each firm.1 I not

only assume a general form of heterogeneity of the agents’ types but I also

allow more than one job position at each firm. While a worker’s productivity

is independent of the job the firm’s reserve value for a job depends on the

job. The size of the firms is determined endogenously in the model.2

Methodologically, my approach to the problem differs from that in the

1I consider separately two cases, one with a finite number of workers and firms of each
type and the other with a continuum of each.

2Because I assume that the job positions are homogeneous in each firm, the model is
applied only to markets for a specific specialty, like accounting, etc.
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previous literature. In the previous literature, worker types can be ordered

in such a way that lower types are less productive than higher types. This

allows authors to obtain an equilibrium of the Bayesian game analytically.

However, worker types in my model are not assumed to be one dimensional so

that worker types may not be ordered. There is no direct analytic solution.

Instead, I focus on the planner’s optimization problem associated with the

model and derive its properties. I show that the solution of the optimization

problem can be interpreted as the symmetric equilibrium of a Bayesian game

that models the behavior in the labor market. In the cited literature the

focus is on the equilibrium of the model which is shown to coincide with the

planner’s solution. There are two reasons why I solve the model indirectly

by focusing on the planner’s optimization problem instead of the equilibrium

of the model.

1. The planner’s problem is tractable. I give conditions under which the

planner’s problem is a concave optimization problem. Although there

is no direct analytical solution, this fact allows me to propose a new

use for standard algorithms in constructing a solution to the planner’s

problem.

2. This approach offers a natural way to construct symmetric equilibria

in a class of Bayesian games for which there are no direct analytical

solutions. The class of Bayesian games that I describe in section 4.3

has other than labor market applications. For example, in section 4.4,

I present a game with imperfect information in which firms choose

simultaneously different markets. If more than one firm enter the same

market the firms compete in Bertrand in this market. The paper shows

how to construct symmetric equilibria in these types of games.
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The approach also allows me to show that certain results of the previ-

ous literature are robust to the extension of the model that I propose. In

particular,

• the equilibrium in the market is constrained efficient (that is, it coin-

cides with the solution of the constrained planner’s optimization prob-

lem).

• Both competition and wages increase in the labor market as the number

of firms increases.3

The paper is organized as follows. In section 4.2, I introduce the model,

denoted by MI , with coordination frictions, with a finite number of agents of

each type and an arbitrary but finite number of jobs at each firm. I show that

the planner’s optimization problem, associated with the model, is a concave

maximization problem.

In section 4.3, I show that MI can be represented as a Bayesian game.

The solution of the optimization problem associated with MI coincides with

the symmetric equilibrium of the Bayesian game.

To formulate the model with coordination frictions in the case of a con-

tinuum number of agents, I introduce first in section 4.5 a sequence of MI
n

models with a special choice of parameters of the models. The model M∞

with a continuum number of agents is interpreted as a limit of the sequence

MI
n. A formal description of M∞ and its properties is given in section 4.6.

In particular, in section 4.6.4, I show how the optimal flows of workers to

firms can be constructed numerically in the case that there is a single job

position in each firm.

Finally, section 4.7 concludes the paper.

3The wages decrease as the number of workers increases.
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4.2 Discrete Model

In this section, I describe a matching model in which there are coordination

frictions, a finite number of types of each agent, a finite number of workers

and firms, and an arbitrary but finite number of jobs at each firm. I denote

the model by MI .

4.2.1 Model Set Up

MI is described as follows.

Agents

There are i = 1, . . . , I workers and m = 1, . . . ,M firms. Let Km denote

the number of job positions available at firm m and let rjm denote the

firm’s reserve value of job j = 1, . . . , Km at firm m. Firm m with

job position j fills a job with reserve value rjm only if the worker’s

productivity at this firm is greater than or equal to rjm.

Preferences

Both workers and firms are risk-neutral so that workers maximize ex-

pected wages and firms maximize expected profits. Utility of the agents

is transferrable. The reservation utility of each worker is zero.

Time and uncertainty

There are two periods of time: t = 0 (ex-ante stage) and t = 1 (ex-post

stage). At t = 0, every worker is identical. At t = 1, each worker learns

his type g ∈ {1, . . . , G}. A worker’s type is randomly and independently

drawn according to a common distribution f = (f1, . . . , fG). Let ωgm

denote the productivity of a worker of type g at firm m. I note that it

is possible for ωgm < ωg′m even though ωgm′ > ωg′m′ . Thus, one may
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not be able to rank worker types g according to productivity as any

ranking also depends on m. If there were a continuum of types, then

this inability to rank worker types according to productivity would be

modelled by the existence of multi-dimenional types. Since there is a

finite number of types, the aspect of multi-dimensionality is captured

by the fact that one cannot separate the types into higher and lower

types as we cannot order the types of firms and workers in such a way

that productivity increases in each variable separately.

Application probabilities

Each worker applies only to a single firm. The probability that worker

i of type g applies to firm m is denoted as pi
gm. Let pi = (pgm)i denote

a G×M matrix of application probabilities of worker i. In this paper,

I consider only symmetric application probabilities

pi = pj for any i, j (4.2.1)

Let p = (pgm) denote a common G ×M matrix of application proba-

bilities.

Matches in a firm

Suppose that a subset Im of workers of types (g1, . . . gL) applies to firm

m and the workers are ordered in such a way that their productivities at

the firm are nondecreasing: ωg1m ≥ ωg2m ≥ . . . ≥ ωgLm. Suppose also

that the reserve values rjm of the job vacancies at firm m are ordered

in nonincreasing order: r1,m ≤ r2,m ≤ . . . ≤ rKm,m. I assume that

the most productive worker from the set Im is matched with the job

position that has the lowest reserve value, the worker with the second

highest productivity is matched with the job position that has the
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second lowest reserve value, etc. The workers and the job position are

matched in this way until the productivity of the next matched worker

is smaller than the reserve value of the next matched job position.4

The matching is illustrated in Figure 4.2.1.

Figure 4.2.1 The reserve values rj,m correspond to the supply of jobs at firm m.

The productivities ωgim of the workers from the set Im correspond to the demand

for job positions. On the left panel, all workers who apply to firm m are matched

to jobs at the firm. On the right panel, the workers and the firm are matched

up to the point where the lowest reserve value of unfilled job positions exceeds the

highest productivity of unmatched worker. Some workers and jobs in the example

stay unmatched.

Surplus

Let ωgm − rjm denote the surplus generated in a match between a

worker of type g and job j at firm m. Suppose that types of workers

4This is one way for a planner to choose a set of matches to maximize the aggregate
surplus, generated at the firm. What matters is which set of worker types are assigned to
which set of jobs at each firm and not the exact matching of specific workers to specific
jobs within the two sets.
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are g = (g1, . . . , gI) and worker i of type gi applies to firm mi. Let

m = (m1, . . . ,mI). Then the surplus generated in firm m, denoted by

W̃m(g,m), is the sum of surpluses generated in all the matches in firm

m given the set Im of types gi ∈ (g1, . . . , gI) for whom mi = m. The

aggregate surplus, denoted by W̃ (g,m), is a sum of surpluses generated

at each firm

W̃ (g,m) =
∑
m

W̃m(g,m) (4.2.2)

Since each worker’s type is randomly and independently drawn accord-

ing to a common distribution f = (f1, . . . , fG), if each worker i uses a

common G×M matrix p = (pgm) of application probabilities then, the

expected surplus (denoted by Wm(p)) generated at firm m satisfies

Wm(p) = Eg,m

(
W̃m(g,m) | p

)
(4.2.3)

where the expectation is taken with respect to realizations of g and

m for a given matrix of application probabilities p. The aggregate

expected surplus (denoted by W (p)) satisfies

W (p) = Eg,m

(
W̃ (g,m) | p

)
(4.2.4)

Solution concept

A solution of the model is a G × M matrix of symmetric application

probabilities p = (pgm) that maximizes the expected aggregate surplus

W (p). The optimization problem is described formally in the next

section. In section 4.3, I show that the model can be represented as

a Bayesian game and that the solution of the optimization problem p

can be interpreted as a symmetric equilibrium of the game.
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4.2.2 Optimization Problem

The surplus maximizing application probabilities of workers to jobs are de-

scribed by a G×M matrix p = (pgm) that solves the following optimization

problem


maxp W (p)∑

m pgm ≤ 1
pgm ≥ 0

(4.2.5)

where W (p) =
∑

m Wm(p) is the aggregate expected surplus generated by

all matches in the market. Let pm = (p1m, . . . , pGm) denote the application

probabilities of workers of types g = 1, . . . , G to firm m. Note that Wm(p)

does not depend on the application probabilities to firms other than firm

m. Therefore, at the risk of abusing notation, I write the function Wm(pm)

as a function of the argument pm only. For different restrictions on the

parameters of the model, I give explicit descriptions of the function Wm(pm)

in section 4.8.1 in the appendix of the paper.

The following theorem provides sufficient conditions under which the ob-

jective function in 4.2.5 is concave.

Theorem 4.2.1 Suppose that either

(a) Firm m ∈ {1, ...M} has a constant reserve value of each job position

(that is, for each m, rjm = rm for all j)

or

(b) The productivity of a worker does not depend on the type of the worker

at firm m ∈ {1, ...M} (that is, for each m, ωgm = ωm for any g)

Then the expected surplus function W (p) is a concave function of a

G × M matrix of application probabilities p on the set of all feasible

matrices of application probabilities.



CHAPTER 4. MATCHING WITH COORDINATION FRICTIONS 107

The proof of the theorem is given in section 4.8.3 (page 147) in the the

appendix of the paper. The first condition above says, from the point of view

of a firm, jobs are homogeneous since the reserve value is constant across jobs

at any given firm. The second condition above states that, from the point of

view of any particular firm, workers are homogeneous ex post since a worker’s

productivity is constant across worker types at any given firm. Though a

direct analytical solution to the planner’s problem 4.2.5 may not exist in

general, there are standard algorithms which solve the planner’s problem

4.2.5 whenever the objective function is concave. Thus, whenever conditions

(a) or (b) hold, one can obtain the solution to the planner’s problem 4.2.5.

4.3 Matching with Frictions as a Bayesian

Game

In this section, I show that the solution of the optimization problem 4.2.5 is

a symmetric equilibrium of a suitably defined Bayesian game. The Bayesian

game describes a decentralized labor market with coordination frictions. In

the market, the workers choose firms simultaneously and each worker applies

to a single firm. The frictions are modelled by the following three assump-

tions: (1) each worker can send an application only to a single firm, (2)

each worker observes only his own type but not the type of the other work-

ers (“informational frictions”), and (3) in equilibrium, workers of the same

type choose a common strategy (“symmetry frictions”). The Bayesian game,

denoted by GI , is described formally as follows.

Players

There are i = 1, . . . , I players whom we interpret as workers.

State of nature
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Each worker is endowed with a type g ∈ {1, . . . , G}. The state of

nature is a vector g = (g1, . . . , gI), where gi is a type of worker i.

The probability that state g occurs is Pr(g) = fg1 . . . fgI
, where f =

(f1, . . . , fG) is some given vector of probabilities (fg ≥ 0,
∑

g fg = 1).

Signal functions

Each worker i observes only his own type. That is, the signal function

of worker i is si(g1, . . . , gI) = gi.

Actions

The set of actions of each worker is {1, . . . ,M}. A choice of action m

by a worker is interpreted as a choice to apply to firm m.

Strategy

A strategy of worker i is a G×M matrix pi = (pi
gm), where pi

gm is the

probability that worker i of type g applies to firm m.

Solution

In this chapter, I consider only symmetric equilibria of the game5

p̂i
gm = p̂gm (4.3.1)

That is, I assume that in equilibrium each worker uses a common ap-

plication strategy p̂gm.

Payoffs

Suppose that the state of nature is g = (g1, . . . , gI) and that worker

i uses the pure strategy in which worker i applies to firm mi with

5As I show in Theorem 4.3.1, the set of symmetric equilibria of GI can be associated
with the set of solutions of MI (a solution of MI is defined as a solution of the planner’s
constrained optimization problem 4.2.5).
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probability one. Let m = (m1, ...,mI), g−i = (g1, . . . , gi−1, gi+1, . . . , gI)

and m−i = (m1, . . . ,mi−1, mi+1, . . . ,mI). For each m = 1, ...,M , let

W̃m(g,m) denote the surplus generated at firm m in the presence of

worker i and, at the risk of abusing notation, let W̃−i
m (g−i,m−i) denote

the surplus generated at firm m in the absence of worker i (the surplus

is the sum of surpluses generated in all the matches in the firm where

a match is formally defined in section 4.2.1 on page 103). The payoff

of worker i who applies to firm mi is

ṽi(g,m) = W̃mi
(g,m)− W̃−i

mi
(g−i,m−i) (4.3.2)

Thus, worker i receives the portion of the surplus contributed by worker

i.

The previous literature (for example, [27] and [34]) analyzes the Bayesian

game in which (i) a single job position is traded at each market and, there-

fore, each Vickrey mechanism is a second price auction and (ii) the type of

a worker is described by a one-dimensional characteristic. The literature de-

scribes explicetly the symmetric equilibrium and shows that the symmetric

equilibrium of the Bayesian game coincides with the solution of the expected

aggregate surplus maximization problem. In Theorem 4.3.1 I generalize this

result for the case of GI Bayesian game.

Theorem 4.3.1 The set of solutions of the first-order Kuhn-Tucker condi-

tions of the optimization problem 4.2.5 coincides with the set of symmetric

Bayesian equilibria of GI .

The intuition behind this result is straightforward. The key observation

is that if the Vickrey mechanism is applied at each firm to allocate the sur-

plus generated at the firm, then the expected payoff of each worker equals
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the expected aggregate surplus minus some function that does not depend

on the worker’s application strategy. Therefore, for each worker and for any

given application strategies of the other workers, the worker’s application

strategy maximizes his expected payoff if and only if it maximizes the ex-

pected aggregate surplus. In the Appendix, I provide a rigorous proof of the

result.

Since the inequality constraints of the optimization problem 4.2.5 are

linear, first-order Kuhn-Tucker conditions must be satisfied at any solution

to the optimization problem 4.2.5. This allows me to state Corollary 4.3.1.

Corollary 4.3.1 A solution p̂ to the optimization problem 4.2.5 is a sym-

metric Bayesian equilibrium of GI .

When W is concave or strictly concave Theorem 4.3.1 allows us to talk

about efficiency and uniqueness of the symmetric Bayesian equilibrium of GI

as stated in the next Corollary.

Corollary 4.3.2 If the expected aggregate surplus function W (p) is concave

then any symmetric equilibrium of GI maximizes W (p). If the function W (p)

is strictly concave then there exists a unique symmetric equilibrium of GI .

This generalizes the result in the previous literature that the equilibrium

in the market is constrained efficient when W is concave (that is, it coincides

with the solution of the constrained planner’s optimization problem 4.2.5).

If, instead of defining the surplus to be a function of symmetric application

probabilities, I define the surplus to be a function of asymmetric application

probabilities, then the unconstrained surplus-maximizing profile of applica-

tion probabilities may not be symmetric. (The asymmetric equilibrium of

the Bayesian game models the market in which there are no “symmetry fric-

tions”). In the following simple example, I consider a Bayesian game GI ,
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introduced in this section, in which (i) there are two workers (I = 2) who

are each endowed with a single common type (G = 1), (ii) there are two

identical firms that each have a single job position at zero reservation price,

and (iii) the productivity of a worker at a firm is ω = 1. (There are no “in-

formational frictions” in this game since there is only one type of worker). I

compare symmetric and asymmetric equilibria of the game. Let p = (p, 1−p)

and q = (q, 1− q) denote application strategies of workers one and two and

let W asym(p, q) denote the expected aggregate surplus generated by a pair

of strategies p and q. The explicit expression for the expected aggregate

surplus is

W asym(p, q) =

pq + (1− p)(1− q) + 2p(1− q) + 2q(1− p) = 1 + p + q − 2pq

The function W asym(p, q) is illustrated in the figure below.

Under the symmetry constraint (p = q) the function W asym(p, q) reduces to

the expected surplus function W (p) as in 4.2.4. That is,

W (p) = 1 + 2p− 2p2
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The pair (p, q) = (1
2
, 1

2
) is a saddle point of the function W asym(p, q) and p = 1

2

maximizes the function W (p). Function W asym(p, q) attains its maximum at

two points: (p, q) = (1, 0) and (p, q) = (0, 1). Since W (p) is strictly concave,

Theorem 4.3.1 implies that (p, q) = (1
2
, 1

2
) is the only symmetric equilibrium

of the game GI . Since (p, q) = (1, 0) and (p, q) = (0, 1) solve{
maxp,q W asym(p, q)
p, q ∈ [0, 1]

(4.3.3)

the two strategies belong to the set of asymmetric equilibria of GI (In the ex-

ample, the set of Bayesian equilibria of GI contains three elements: (1
2
, 1

2
), (1, 0),

and (0, 1)). The maximum value of W asym(p, q) (attained at (p, q) = (1, 0)

and (p, q) = (0, 1)) is larger than the maximum value of W (p) (attained at

p = 1
2
).

4.4 An Example

In Section 4.2.1 I interpret p as a G×M matrix of application probabilities

(pgm) that a worker of type g applies to firm m. If the number of workers

who apply to a firm exceeds the number of jobs, then the many-to-one match

is the one (if any) that generates the greatest positive surplus. In order to

illustrate that MI has applications outside of labor markets, I now present

an example in which there are two firms and two markets, each of which

contains 1 consumer. Each firm produces 1 indivisible unit of a good that

depends on the firm’s type. Each consumer demands 1 unit whose value

depends on the type of firm that produced the good. In this context, p is

interpreted as a G×M matrix of entrance probabilities (pgm) that a firm of

type g enters a market m. If two firms enter a market, then the match that

occurs is the one that generates the greater surplus.

The model is described as follows. There are two firms which are identical
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at period t = 0. At period t = 1, the types of the firms are realized. With

probability fL, a firm’s type is low, ωL, and with probability fH , the firm’s

type is high, ωH . If the firm’s type is ωL then pL denotes the probability that

the firm enters market m1 and 1− pL denotes the probability that it enters

market m2. If the firm’s type is ωH then pH denotes the probability that

the firm enters market m1 and 1− pH denotes the probability that the firm

enters market m2. The aggregate surplus, generated by a matching function,

equals the sum of surpluses in each market. I assume that the valuation of

a consumer for the good generated by the low type firm is independent of

the market but that the valuation of a consumer for the good generated by

the high type firm may depend on the market. That is, a match between

firm ωL and either market generates the surplus ωL; a match between firm

ωH and market m1 generates the surplus ωH and that between firm ωH and

market m2 generates γωH (so that market 1 is identical to market 2 when

γ = 1). Therefore, the surplus, generated in market m1, is either zero (if it is

not matched with either firm), ωL (if it is matched with a low type of firm),

or ωH (if it is matched with one high-type firm). Analogously, the surplus,

generated in market m2, is either zero, ωL, or γωH . The model is illustrated

by the following picture.
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2 firms

ωL ωH

m1 m2

types

application
probabilities

markets

distribution of types

t = 0 : ex-ante stage

t = 1 : ex-post stage

fL fH

pL

1− pL

1− pH
pH

4.4.1 Optimization Problem

In this example, the expected surplus function, W (p), can be written as

follows.

W (p) =

both workers types are ωH︷ ︸︸ ︷
f2

H

[
p2

H(ωH) + 2pH(1− pH)(1 + γ)ωH + (1− pH)2(γωH)
]
+

both workers types are ωL︷ ︸︸ ︷
f2

L

[
p2

L(ωL) + 2pL(1− pL)(2ωL) + (1− pL)2(ωL)
]
+

one worker type is ωL and the other worker type is ωH︷ ︸︸ ︷
2fHfL [pLpH(ωH) + pH(1− pL)(ωH + ωL) + (1− pH)pL(γωH + ωL) + (1− pH)(1− pL)(γωH)]

or equivalently, using matrix notation,

W (p) = 2 ∗
(

pH , pL

)( −1+γ
2

ωHf 2
H −fLfHωL

−fLfHωL −ωLf 2
L

)(
pH

pL

)
+

+ 2
(

ωHf 2
h + fLfH(ωL − (γ − 1)ωH), ωLf 2

L + fLfHωL

)( pH

pL

)
+

+
[
ωLf 2

L + γωHf 2
H + 2γωHfLfH

]
(4.4.1)

If two firms enter a market, then the match that occurs is the one that
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generates the greater surplus. The expected surplus function satisfies the

following two properties.

1. The surplus function W is concave in the matrix of entrance probabil-

ities p 6.

2. If γ = 1, then market 1 is identical to market 2 and, in the solution,

the probability that a firm enters a market is 1
2
. (In general, identical

markets are chosen with equal probabilities by the firms of the same

type in a symmetric equilibrium (see proposition 4.5.1 which is given

below).)

Now, I find the entrance probabilities (pL, 1− pL) and (pH , 1− pH) that

maximize the value of W (p). First, I find the solution of the unconstrained

optimization problem maxp W (p). Then, I find the conditions under which

the solution of the unconstrained optimization problem satisfies the con-

straints 0 ≤ pL ≤ 1 and 0 ≤ pH ≤ 1. In the case that the constraints do not

hold, I construct the solution in which one of thhe constraints is binding.

The first order conditions of the optimization problem are{
f 2

HωH + fLfH(ωL − (γ − 1)ωH) = (1 + γ)f 2
HωHpH + 2fLfHωLpL

f 2
LωL + fLfHωL = 2f 2

LωLpL + 2fLfHωLpH

The solution of the system is


pH = 1

2
− (γ − 1)

1
2
+

fL
fH

1+γ−2
ωL
ωH

pL = 1
2

+ (γ − 1)
1+ 1

2

fH
fL

1+γ−2
ωL
ωH

(4.4.2)

6This follows since the first condition in Theorem 4.2.1 is satisfied whenever there is a
single job position. Also this property can be obtained directly since the second derivative
matrix (the matrix in the quadratic term of 4.4.1) has negative elements on the main
diagonal and positive determinant.
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The probabilities, given in 4.4.2, satisfy the constraints 0 ≤ pH ≤ 1 and

0 ≤ pL ≤ 1 whenever {
1 ≥ ωL

ωH
+ (γ − 1) fL

fH
3
2
− γ

2
≤ ωL

ωH
+ 1

2
(γ − 1)fH

fL

(4.4.3)

If the first constraint in 4.4.3 is violated, then pH = 0 at the surplus max-

imizing entrance probabilities. If the second constraint in 4.4.3 is violated,

then pL = 1 at the surplus maximizing entrance probabilities.

4.4.2 Matching as a Bayesian Game

In this section, I represent MI as a Bayesian game and show that the sym-

metric equilibrium of the game coincides with the solution of the optimization

problem of the previous section. The game is described as follows.

There are two players in the game: firm one and firm two. The state of

nature is described by a vector (ω1, ω2), where ω1 ∈ {ωL, ωH} is the type of

firm one and ω2 ∈ {ωL, ωH} is the type of firm two. The type of the firm

is interpreted as the quality of the good sold by the firm (ωL is interpreted

as a low-quality good and ωH is interpreted as a high-quality good). Each

firm observes only her own type. That is, the signal function for firm one

is s1(ω1, ω2) = ω1 and the signal function for firm two is s2(ω1, ω2) = ω2.

The set of actions for firm one and firm two is {m1, m2}. A firm’s choice of

mj, j = 1, 2 is interpreted as a choice to enter market mj. A good produced

by a low-quality firm is interpreted to be a low-quality good; that produced

by a high-quality firm, a high-quality good.

There is a single consumer in each market who has a perfectly elastic

demand for q = 1 unit of the good. The low-quality good is valued at ωL in

both markets. The high-quality good is valued at ωH in market m1 and γωH
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in market m2, where γ ≥ 1. If there is only one firm that enters a market,

then the firm obtains the entire value of the good produced. If two firms

of identical types enter a market, then each firm earns zero. If two firms of

different types enter a market, then the low quality firm earns zero and the

high quality firm earns the difference in the values.

The game can be equivalently described by the following diagram (see

chapter 9 in M. Osborn ”An Introduction to game Theory”, 2004 for the

definition and representation of a Bayesian game).

m1 m2

m1 (0, 0) (ωL, ωL)
m2 (ωL, ωL) (0, 0)

m1 m2

m1 (ωH − ωL, 0) (ωH , ωL)
m2 (γωH , ωL) (γωH − ωL, 0)

m1 m2

m1 (0, ωH − ωL) (ωL, γωH)
m2 (ωL, ωH) (0, γωH − ωL)

m1 m2

m1 (0, 0) (ωH , γωL)
m2 (γωH , ωH) (0, 0)

'

&

$

%
'

&

$

%

'

&

$

%

'

&

$

%

fL fL

1 : ωL

fH fH

1 : ωH

fL

fL

2 : ωL

fH

fH

2 : ωH

Now I show that the symmetric equilibrium of the game coincides with

the solution of the optimization problem. Let p2 = ((pL, 1−pL), (pH , 1−pH))

be a strategy of firm two. Such a choice of p2 by firm two is interpreted as a

decision to choose actions m1 and m2 with probabilities pL and 1− pL if its

type is ωL; actions m1 and m2, with probabilities pH and 1− pH if its type is

ωH . Given firm two’s strategy p2 and a pure action of firm one of type ωL,
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the utility of firm one is

u1(m1 | ωL) = fLωL(1− pL) + fHωL(1− pH) (4.4.4)

if firm one chooses market m1 and

u1(m2 | ωL) = fLωLpL + fHωHpH (4.4.5)

if firm one chooses market m2. Firm one of type ωL is indifferent between

the two actions if

fL(1− 2pL) + fH(1− 2pH) = 0 (4.4.6)

Given firm two’s strategy p2 and a pure action of firm one of type ωH , the

utility of firm one is

u1(m1 | ωH) = fL [(ωH − ωL)pL + ωH(1− pL)] + fHωH(1− pH) (4.4.7)

if firm one chooses market m1 and

u1(m2 | ωL) = fL [(γωH − ωL)(1− pL) + γωHpL] + fHγωHpH (4.4.8)

if firm one chooses market m2. Firm one of type ωH is indifferent between

the two actions if

fL [(1− 2pL)ωL + (1− γ)ωH ] + fH [(1− 2pH)ωH + (1− γ)pHωH ] = 0

(4.4.9)

Solving the system of two equations 4.4.6 and 4.4.9 I obtain 4.4.2.

4.5 A Sequence of MI
n Models

In section 4.6, I introduce and analyze model M∞ with a continuum number

of workers and firms. It is natural to formulate M∞ as a limit of a sequence

of models MI
n with a finite number of agents. In this section, I describe
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element n of the sequence of models {MI
n, n = 1, 2, . . . ,∞} in which there

is (1) a finite fixed number G of worker types, (2) a finite fixed number M

of firm types, (3) a number I = nα indicating the total number of workers

(4) a fixed distribution of worker types that randomly determines the type of

each worker, (5) a number nβm of firms of each type. In section 4.6.3, I show

that M∞ is naturally interpreted as a limit of the sequence {MI
n, n =

1, 2, . . . ,∞} as n goes to infinity.

Note that the following parameters of MI
n depend on n (the other pa-

rameters are constant and the same as described in the set-up of model MI

in section 4.2.1).

Number of agents

The number of workers is I = nα, where α is some constant. At the risk of

abusing notation, I now use index m to denote the type of a firm and I use

index M to denote the number of firm types. The number of firms of type

m is nβm and the total number of firms is n
∑

m βm. All firms of type m are

identical. That is, the number of job positions, the reserve values of the job

positions, and the productivity of workers are the same at any two firms of

type m. I assume also that for each m

rjm = rm for any j (4.5.1)

so that, by Theorem 4.2.1, the surplus function W (p) associated with MI
n

is concave.

Application probabilities

The general matrix of application probabilities associated with the model

MI
n is of size G × n

∑
m βm. However, Proposition 4.5.1 shows that I can
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restrict the matrix of application probabilities to be symmetric with respect

to the probability that a worker applies to any firm of type m (note that

the proposition requires concavity of the surplus function W (p). That is,

while looking for the surplus maximizing matrix of application probabilities,

Proposition 4.5.1 allows me to restrict to those matrices in which a worker of

type g applies with equal probability to any firm of type m. This simplifies

the analysis and allow me to consider matrices of smaller dimension. Thus,

I need only consider G × M matrices p = (pgm) such that pgm ≥ 0 and∑
m pgm = 1 where pgm is the probability that a worker of type g applies to

a firm of type m and the probability that a worker of type g applies to a

specific firm of type m is pgm

nβm
.

For each n, the parameters
(
G, M, α, βm, ωgm, rm, Km, f, pgm

)
of MI

n are

independent of n. The modelMI
n is illustrated in the following figure.

nα

nαfg

nβm

. . .

. . .

workers

distribution of types

types

application
probabilities

firms

pgm/(βmn)
n →∞

Proposition 4.5.1 Let S be a set of firms such that for any m ∈ S there

exist constants KS ,rS, ωgS, such that Km = KS , rm = rS, ωgm = ωgS. Then

there exists a surplus-maximizing matrix of application probabilities such that
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for each g workers of type g apply with equal probabilities to the firms in this

set, that is, pgm = pgS for each firm of type m that belongs to the set S.

Thus, whenever there is a set of firms that are identical from the point

of view of all workers ex ante, there exists a surplus-maximizing probability

matrix in which a worker’s surplus maximizing probability of applying to each

firm in the set is constant across all firms in the set. I give some intuition

in the case that the set of identical firms is the entire set of firms. Recall

that the set of solutions to the optimization problem 4.2.5 is identical to the

set of Bayesian equilibria of the Bayesian game GI . If the firms are identical

from the point of view of all workers ex ante, and all workers apply to each

firm with a common probability then, all workers are indifferent among all

firms so there exists an equilibrium of the Bayesian game GI in which the

probability that a worker applies to a firm is constant across firms. The proof

is in the appendix. Corollary 4.5.1 shows that the description of worker types

should depend only on productivity characteristics.

Corollary 4.5.1 Let S be a set of types of workers such that there exist

constants, ωSm, such that ωgm = ωSm for any worker whose types g belongs

to the set S. Then there exists a surplus-maximizing matrix of application

probabilities such that for each m the application probability pgm = pSm so

that each worker whose type g belongs to the set S applies to firm m with a

common probability.

Thus, whenever there is a set of types of workers for whom the produc-

tivity of the worker depends only on the type of firm and not on the worker’s

type, there exists a surplus-maximizing probability matrix for which the sur-

plus maximizing probability of applying to firm m is constant across all types

of workers in the set. Intuition analogous to that given above can be offered.
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In the literature, it is common for frictions to be introduced in models

with a finite number of types. Generally, if there is a continuum of types,

every agent is different and so different types choose different firms which

implies that there are no frictions. However, in this paper, it is possible

to formulate a model with frictions in which there is a continuum number

of types and agents as a limit of models with frictions in which there is a

finite number of types and agents7. Therefore, coordination frictions can be

naturally defined in a model with a continuum number of types. In the next

section, I show how a model with frictions in which there are a continuum of

workers and firms and a finite number of types can be viewed as a limit of

the sequence MI
n.

4.6 Continuous Model

In this section, I consider a model, denoted by M∞, in which there is a

continuum of workers of each type and a continuum of firms of each type.

The number of types of workers and firms is finite. The mass of workers

of type g is αfg which is denoted by αg. The mass of firms of type m is

βm. The masses can be interpreted naturally as the limit of sequences of

normalized masses of the modelMI
n as n → ∞. To see this, normalize the

mass of workers and firms in MI
n of a given type by dividing the number of

workers and firms of each type by n. The number of firms of type m in MI
n

is deterministic and equal to nβm. Therefore, the mass of firms of type m is

βm and the limit is βm as n → ∞. The number Rg of workers of type g in

MI
n is a random variable with expectation nαg. By the law of large numbers,

as n →∞, the normalized random variable Rg converges to its expectation,

7I do not consider the model with a continuum number of types in this paper and the
results of this paper do not apply directly to this case.
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αg. Therefore, one can interpret the masses of workers and firms in M∞ as

a limit of normalized masses in MI
n.

4.6.1 Model Set Up

There is no ex-ante stage and, therefore, there is no uncertainty about the

workers’ types.

Agents

Worker types are denoted by g ∈ {1, . . . , G} so that there are G types of

workers. The mass of workers of type g is αg. Firm types are denoted

by m ∈ {1 . . . M} so that there are M types of firms. The mass of

firms of type m is βm. Let Km denote the number of job positions

available at each firm of type m and let rjm denote the reserve value

of job j = 1, . . . , Km at each firm of type m. As in MI
n, I assume that

for each m

rjm = rm for any j (4.6.1)

Preferences

As in MI , I assume that agents are risk-neutral and that utilities of

the agents are transferrable. Workers have zero reservation utilities.

Flow parameters

I cannot define directly the probability that a worker of type g applies

to a specific firm8 of type m in M∞. Instead, I introduce the following

notion of flows of workers to jobs. Recall that in MI
n, we can restrict

the matrix of application probabilities to be symmetric with respect

to the probability that a worker applies to any firm of type m. The

8In MI
n, the probability that a worker of type g applies to a specific firm of type m is

defined as pgm

nβm
. In the limit the probability is equal to zero.
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number of workers is a random variable whose expectation is nαg. Each

worker of type g applies with probability pgm

nβm
to a firm of type m. It is

well known9 that as n →∞ the distribution of the number of workers

of type g who arrive at a firm of type m converges to the Poisson

distribution with parameter

qgm =
αg

βm

pgm (4.6.2)

Therefore, I assume that, in M∞, the probability that exactly x ∈

{0, 1, . . .} workers of type g apply to a firm of type m is

νx =
(qgm)x

x!
exp(−qgm) (4.6.3)

where the flow parameters qgm (parameter qgm is the average number

of applications from the workers of type g to a specific firm of type m)

satisfy the constraints10{ ∑
m βmqgm = αg for each g

qgm ≥ 0 for all g,m
(4.6.4)

The constraint 4.6.4 is a mass balance condition. It says that the mass

of workers of type g equals the mass of applications to all the firms

from workers of type g. (This is an analogue of the condition that each

worker applies to a single firm in the discrete case).

Surplus

Pick a firm of type m. Suppose that the number of workers of type g

who apply to this firm of type m is denoted by xgm. Given xm =

(x1m, . . . , xGm), the surplus function generated at the firm of type

9The result can be found in most probability theory textbooks (see for example, V.
Rotar, ”Probability Theory”, 1997 (chapter 10)).

10The constraints are induced by the constraints on application probabilities pgm ≥ 0
and

∑
m pgm = 1 in MI

n.
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m, denoted by W̃ c
m(xm), is the sum of surpluses generated in all the

matches in the firm11. Given x = (x1, . . . ,xM), the aggregate surplus,

denoted by W̃ c(x), is the sum of surpluses generated in all the firms

W̃ c(x) =
∑
m

βmW̃ c
m(xm) (4.6.5)

Given specific flow parameters we can take expectations to calculate

the expected surplus generated at each firm of type m and then add

up to obtain the expected aggregate surplus generated by all firms of

each type m = 1, ..,M . Let qm = (q1m, . . . , qGm) denote the vector of

flow parameters of type g = 1, . . . , G workers to a firm of type m. Let

q = (qgm) denote the G×M matrix of flow parameters. The expected

surplus, denoted by W c
m(qm), generated at a firm12 of type m is the

expectation of W̃ c
m(xm) with respect to the realizations of xm given

q = (qgm).

W c
m(q) = Exm

(
W̃ c

m(xm) | q
)

(4.6.6)

An explicit expression of the function W c
m(qm) is given in section 4.8.1

in the appendix of this paper. Finally, the expected aggregate surplus,

denoted by W c(q), is the expectation of W̃ c(x) with respect to the

realizations of x given q = (qgm).

W c(q) = Ex

(
W̃ c(x) | q

)
(4.6.7)

Solution Concept

11As in MI , the surplus generated in a match between a worker of type g and job j in
a firm of type m is ωgm − rm. The matches in a firm are described in section 4.2.1 on
page 103

12The surplus depends only on the parameters of the flows of workers to firms of type
m and does not depend on the parameters of the flows of workers to firms of other types.
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The solution of the model is an array q = (qgm) of flow parameters such

that q maximizes the expected aggregate surplus W c(q). The formal

description of the optimization problem is given in the next section.

4.6.2 Optimization Problem

The surplus maximizing G×M matrix q = (qgm) of workers’ flows parameters

is found from the following maximization problem


maxq W c(q)∑

m βmqgm = αg

qgm ≥ 0
(4.6.8)

where W c(q) =
∑

m βmW c
m(qm).

So as to have an idea of what the objective function might look like, I

now give an explicit expression for the expected surplus W c
m(qm) in the case

that the number of jobs at a firm of type m is Km = 1 for each m. Let πm

denote a permutation

πm =

(
1 , . . . , G

π1m, . . . , πGm

)
(4.6.9)

such that the productivity of workers of different types at a firm of type m

is ordered as follows

ωπ1mm ≥ ωπ2mm ≥ . . . ≥ ωπLmm ≥ rm ≥ . . . ≥ ωGm ≥ 0 (4.6.10)

Then with probability (1−exp(qπ1mm)) at least one worker with productivity

ωπ1mm applies to the firm and generates surplus ωπ1mm. With probability

exp(−qπ1mm)(1 − exp(qπ2mm)) no worker of productivity ωπ1mm and at least

one worker of productivity ωπ2mm applies to the firm and the match generates

surplus ωπ2mm. In general, whenever g ≤ L the probability that surplus

ωπgmm is generated in the firm is exp(−qπ1mm−. . .−qπg−1mm)(1−exp(qπgmm)).
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Whenever g > L a worker of type ωπgmm never obtains the job position at a

firm of type m. Taking expectation, I obtain

W c
m(qm) = ωπ1mm(1− exp(qπ1mm)) + ωπ2mm exp(−qπ1mm)(1− exp(qπ2mm))

+ . . . + ωπLmm exp(−qπ1mm − . . .− qπL−1mm)(1− exp(qπLmm)) =

(ωπ1mm−ωπ2mm)(1−exp(−qπ1mm))+(ωπ2mm−ωπ3mm)(1−exp(−qπ1mm−qπ2mm))

+ . . . + ωπLmm(1− exp(−qπ1mm − . . .− qπLmm)) (4.6.11)

4.6.3 Continuous Model as a Limit of a Sequence of
Discrete Models

In Theorem 4.6.1 I show the relationship between the optimization problem

associated with M∞ and that associated withMI
n. Suppose that the surplus

generated at a firm of type m in MI
n is denoted by W

(n)
m (pm) and that in

M∞ is denoted by W c
m(qm).

Theorem 4.6.1 Suppose that the matrix of application probabilities p in

MI
n and the matrix of flow parameters q in M∞ satisfy

pgm =
βm

αg

qgm (4.6.12)

1. As n → ∞, W
(n)
m (pm) → W c

m(qm) and, therefore, W (n)(p)
n

→ W c(q)

where the convergence is pointwise.

2. If W (n)(p) is concave with respect to p for any n then W c(q) is concave

with respect to q.

The proof can be found in section 4.8.4 in the appendix of the paper.
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4.6.4 Construction of the Optimal Flows in the Case
of a Single Job Position at each Firm (Km = 1)

By Theorem 4.2.1, the expected aggregate surplus function W (n)(p) is con-

cave with respect to p (if Km = 1 for any m then condition (a) of the

theorem holds). Therefore, by Theorem 4.6.1, the function W c(q) is also

concave. Thus, a variety of standard methods13 can be applied to construct

the solution of problem 4.6.8. An explicit expression for W c
m(qm) is given in

4.6.11.

In this section, I apply one such procedure to a modified but equivalent

optimization problem. The procedure has a natural interpretation of an

ascending bid auction14 in which firms bid for the flows of the workers.

Since the functions W c
m(qm) are concave, problem 4.6.8 can be equiva-

lently represented as the following min max problem.

min
u

[
max
q≥0

∑
m

βm

(
W c

m(qm)−
∑

g

uqqgm

)
+
∑

g

ugαg

]
(4.6.13)

where u = (u1, . . . , ug) is a vector of lagrange multipliers associated with the

constraints
∑

m βmqgm = αg in 4.6.8.

Let

φ(u) = max
q≥0

∑
m

βm

[
W c

m(qm)−
∑

g

uqqgm

]
+
∑

g

ugαg (4.6.14)

The function φ(u) is a maximum of functions that are linear with respect

to u. Therefore, the function φ(u) is concave. Thus, the constrained min max

problem 4.6.13 can be rewritten as the unconstrained concave minimization

problem

min
u

φ(u) (4.6.15)

13See, for example, Hoang Tuy, ”Convex Analysis and Global Optimization”
14This is a natural analogue of a similar procedure applied in the case of a frictionless

market which is described by an associated assignment linear optimization problem. See,
for example, [30] and [6]
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In the rest of this section I make the following assumptions.

Assumption 4.6.1
(i) ωgm > rm for any g and m
(ii) for each m, ωgm 6= ωg̃m for any g 6= g̃

Without loss of generality, I also assume that rm = 0 for all m.

Properties of Function φ(u)

In this section, I derive some important properties of φ(u). I use these

properties to prove that, at each iteration, the Auction algorithm, described

in section 4.6.4, produces variables that converge to the surplus-maximizing

matrix of flow parameters q̂ and associated lagrange multipliers û.

First, I show that the function φ(u) is differentiable and derive explicit

expressions for the first derivative of φ(u).

Lemma 4.6.1 If Assumption 4.6.1 holds then the function W c
m(qm) is strictly

concave and, therefore, for any vector u = (u1, . . . , uG) there exists a unique

solution q̂m to the optimization problem

max
qm≥0

[
W c

m(qm)−
∑

g

uqqgm

]
+
∑

g

αgug (4.6.16)

By Lemma 4.6.1, the function φ(u) is differentiable. Let qgm(u) denote the

solution of problem 4.6.16 for a given vector u. Using the Envelope theorem

applied to 4.6.16 I derive the following vector of the partial derivatives of the

function φ(u).

∇gφ(u) = αg −
∑
m

βmqgm(u) (4.6.17)

The next two lemmas establish some properties of the functions qgm(u) and

∇gφ(u).



CHAPTER 4. MATCHING WITH COORDINATION FRICTIONS 130

Lemma 4.6.2 The solution qgm(u) to the optimization problem 4.6.16 has

the following properties.

1. For each g, the function qgm(u1, . . . , uG) is a non-increasing function

of ug.

2. For each g, the function qgm(u1, . . . , uG) is a non-decreasing function

of uh for any h 6= g.

The next lemma follows immediately from Lemma 4.6.2 and equation

4.6.17 for the first derivative of φ(u).

Lemma 4.6.3 For each g, the partial derivative ∇gφ(u1, . . . , uG) has the

following properties.

1. ∇gφ(u1, . . . , uG) is a non-decreasing function of ug.

2. ∇gφ(u1, . . . , uG) is a non-increasing function of uh for any h 6= g.

Auction Algorithm

Recall that since I have shown that the function W c(q) is concave there is a

variety of standard methods that can be applied to construct the solution of

the constrained optimization problem 4.6.8. Recall also that the constrained

optimization problem 4.6.8 is equivalent to the unconstrained optimization

problem 4.6.15. I have also shown that the objective function of the un-

constrained optimization problem 4.6.15 satisfies certain properties. These

properties allow me to apply an Auction algorithm to the unconstrained opti-

mization problem 4.6.15. The Auction algorithm constructs numerically the

solution to the the unconstrained optimization problem 4.6.15. By equiva-

lence, the solution is also the solution to the constrained optimization prob-

lem 4.6.8. The Auction algorithm is an example of a Gauss-Seidel method15.

15Some standard references on Gauss-Seidel method are [5] and [25]
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The algorithm has a natural economic interpretation. The procedure de-

scribes an auction in which the firms bid for the flows of workers of different

types by posting the wages they pay to different types of workers. The auc-

tion starts with the auctioneer submitting a 1×G vector of wages (0, ...., 0)

which are then increased gradually during the auction as follows. At zero

wages, the expected positive mass of workers of type g demanded by firms is

larger than the positive mass of workers of type g who desire jobs and so the

auctioneer increases the wages in some way. If only the wage of workers of

type g increase then demand for workers of type g decreases and the demand

for workers of other types increases. The auction stops when there is no

excess demand for any type of workers. Formally, the algorithm is described

as follows.

Algorithm 4.6.1 (Auction Algorithm)

step 1. Start with zero workers’ utilities ug = 0 g = 1, . . . , G.

step 2. For given utilities u = (u1, . . . , uG), find solution of the optimization

problem 4.6.16. The solution qm(u) = (q1m(u), . . . , qGm(u)) is inter-

preted as demand of a firm of type m for different types of workers.

step 3. Find index g such that the following inequality holds∑
m

βmqgm > αg (4.6.18)

The left-hand side of the equation is interpreted as the aggregate demand

for workers of type g. The right-hand side of the equation is interpreted

as the supply of workers of type g. If no such inequality exists then stop.

If there is at least one such inequality, increase the corresponding value

ug by some small ε > 0 and return to step 2.
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Figure 4.6.1 illustrates convergence of the auction algorithm in the case

of two types of workers, g = 1, 2.

-

6

-

6

u1

u2

∇1φ

∇2φ

u u

-

6
-6
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Figure 4.6.1 The figure shows convergence of the algorithm in (u1, u2) and (∇1φ,∇2φ)

coordinates. The algorithm starts at point A where u1 = u2 = 0 and ∇1φ < 0, ∇2φ <

0. By Lemma 4.6.3, as I increase u1 the value of ∇1φ increases and the value of ∇2φ

decreases. I increase u1 until ∇1φ = 0. Then I increase u2 until ∇2φ = 0. At any stage

of the procedure both ∇1φ and ∇2φ are negative or zero and u1 and u2 are increasing.

However, u1 and u2 can not be increasing till infinity (if ug → ∞ then ∇gφ → αg > 0).

Therefore, the procedure converges to the point where ∇1φ = ∇2φ = 0.

Proposition 4.6.1 The Auction algorithm 4.6.1 produces a G×M matrix

(q̂gm) of demands and a vector of wages û = (û1, . . . , ûG) such that the G×

M matrix (q̂gm) solves the constrained maximization problem 4.6.8 and the

vector of wages is the associated vector of Lagrange multipliers.

4.7 Conclusion and Extensions

The paper studies the problem of constructing the equilibrium flow of workers

to jobs in a model of the labor market with frictions, a finite number of types

available for each agent, a general form of heterogeneity of the agents’ types,

and a finite number of homogeneous job positions at each firm. The problem

of workers’ allocation to jobs in the labor market with frictions is modelled
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as a Bayesian game. The paper shows that the the equilibrium flow can

be constructed as a solution of an associated planner’s constrained concave

optimization problem. The paper proposes a new use of standard numerical

procedures in constructing the Bayesian equilibrium of the model.

To summarize, the paper shows how standard numerical procedures can

be used to maximize the surplus of the labour model and do comparative

statics in the labor market with coordination frictions. The next natural

step would be to find some interesting examples, that can be described by

the model, and demonstrate how the techniques actually work. Also to make

comparative statics meaningful we need conditions for the uniqueness of the

equilibrium that are easily verifiable in practice. These are two of the main

priorities in my future research.

Many extensions of the model are natural. I list here only a few of them.

The model describes a static matching model. An important question is

whether the static model is a steady state of some dynamic model of the labor

market. This would make the model more useful for various applications.

Another assumption that I want to relax is that the job positions are

homogeneous in each firm. Because of the assumption, only markets for a

specific specialty can be described by the model. In practice, however, a

firm hires people with different specialties. It is easy to extend the model

set-up to this case but much more difficult to prove that the properties of

the optimization problem hold. (At this moment I also do not know the

counterexamples that show, for instance, that planner’s optimization problem

is not concave).

In the case of a continuum agents of each type and a single job position at

each firm I have shown that stronger properties of the optimization problem

hold. The properties guarantee, for example, that the auction algorithm
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produces the solution of the optimization problem. It would be interesting

to verify whether the properties hold in a more general case.

Finally, the model can also be extended to the non transferable utility

case. It can be shown that the equilibrium outcome can be obtained as a

solution to a system of linear equations. To show how the equilibrium can

be constructed we need to analyze the properties of the system.

4.8 Appendix

4.8.1 Representation of the Objective Function in MI

and M∞ under Different Restrictions on the Pa-
rameters of the Models

In this section, I give an explicit description of Wm(pm) and W c
m(qm) func-

tions under different restrictions on the parameters in MI and M∞.

Description of Wm(pm) in MI

Recall the definition of the function Wm(pm) in MI . First, each worker i

draws randomly his type. With probability fg the realized type is g. Given

type g, worker i applies with probability pgm to firm m. As a result, some

random set Im of workers applies to firm m. Suppose that the workers in

the set Im are ordered in such a way that their productivity is decreasing

and that the job positions at firm m are ordered in such a way that the

reserve values of the jobs are increasing, r1m ≥ r2m ≥ . . . ≥ rKmm. The

workers in the set Im and the jobs at firm m are matched in a one-to-

one fashion so that the worker with the highest productivity is matched

to a job with the lowest reserve value, the worker with the second highest

productivity is matched with the job with the second highest reserve value,

etc. Each match between a worker of type g and a job position j at firm m
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generates surplus max(ωgm − rjm, 0), denoted by (ωgm − rjm)+. To describe

analytically the surplus generated at firm m, I associate the following random

variable Xi with each worker i. With probability 1 −
∑

g fgpgm (worker i

does not apply to firm m) Xi = 0. With probability fgpgm (worker i draws

type g and applies to firm m) Xi = ωgm. Workers are ex-ante identical,

draw their type and apply to firms independently of each other, and use

symmetric application probabilities. Therefore, the random variables Xi are

independent and identically distributed. To determine the matches in the

firm I order the sequence X1, . . . , XI in a decreasing order so that X(1) ≥

X(2) ≥ . . . ≥ X(I). Random variable X(j) is a jth largest element in the

sequence X1, . . . , XI . By definition, the surplus generated at firm m is

Wm(pm) = E

Km∑
j=1

(
X(j) − rjm

)+
(4.8.1)

Now I impose different restrictions on the parameters of the model to

simplify 4.8.1. I consider three different cases.

Case 1

Let’s assume that all the job positions at firm m have the same reserve value.

Formally, this condition can be written as

Assumption 4.8.1

for each m, rjm = rm for all j (4.8.2)

Without loss of generality, I assume that rm = 0. It follows immediately

from 4.8.1 that the function Wm(pm) can be represented as follows.
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Proposition 4.8.1 Under Assumption 4.8.1 the function Wm(pm) can be

represented as follows. Let X1, X2, . . . , XI be independent identically dis-

tributed random variables. Suppose that for each i support of Xi is
{
0, ω1m, . . . , ωGm

}
and distribution h = (h0, h1, . . . , hG) of Xi is

hg = Pr(Xi = ωgm) = fgpgm h0 = Pr(Xi = 0) = 1−
∑

g

fgpgm (4.8.3)

Then

Wm(pm) = E

Km∑
j=1

X(j) (4.8.4)

where X(j) is the jth largest value in the sequence X1, X2, . . . , XI .

Case 2

Suppose that the productivity of a worker at firm m does not depend on the

type of the worker. Formally, this condition can be written as follows.

Assumption 4.8.2

for each m, ωgm = ωm for any g (4.8.5)

In this case each random variable Xi can take only two values, either zero or

ωm. Let’s call a realization of ωm a success and define random variable Y as

the number of successes in X1, . . . , Xn sequence (Formally, Y = 1
ωm

∑
i Xi).

Without loss of generality, I assume that Km = ∞ (The case of a finite Km

is equivalent to the case in which Km = ∞ and rjm = ∞ for j > Km). Then

the surplus function Wm(pm) in 4.8.1 can be represented as

Wm(pm) = E

Y∑
j=1

(ωm − rjm)+ (4.8.6)

where random variable Y has binomial distribution with parameters

Y ∼ B(I,
∑

g

fgpgm) (4.8.7)

Alternatively, the function Wm(pm) can be described as follows.
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Proposition 4.8.2 Under Assumption 4.8.2 The function Wm(pm) can be

described as follows. Let’s consider the following experiment. There is an

infinite staircase and a lady standing at the bottom of the staircase. The lady

flips a coin I times. Each time the coin shows heads, the lady goes one step

up. Each time the coin shows tails, she does not move. The probability of

heads is p =
∑

g fgpgm. Then the function Wm(pm) is equal to the expected

height that the lady goes up.

Note that the size of step j of the staircase corresponds to the value

(ωm − rjm)+ in 4.8.6 and the size of the step is decreasing with j.

Case 3

Let’s assume that there is a single job position at each firm. Formally, this

can be written as

Assumption 4.8.3

for each m, Km = 1 (4.8.8)

This restriction is stronger than the restriction in case one. The expression

for Wm(pm) given in 4.8.4 can be simplified as

Wm(pm) = EX(1) (4.8.9)

where X(1) = max(X1, . . . , XI). If I substitute the explicit expression for

EX(1) in 4.8.9 I obtain

Wm(pm) =
∑

g:ωgm≥rm

1−

1−
∑

g′:ωg′m≥ωgm

fg′mpg′m

I4ωgm (4.8.10)
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Therefore, Wm(pm) is a function of the form

Wm(pm) =
∑

g

θgγ(Agpm) (4.8.11)

where pm is a G by 1 vector, Ag are some 1 by G vectors, θg are some positive

constants, and

γ(x) : R → R

γ(x) = 1− (1− x)I , x ∈ [0, 1]

It is straightforward to verify that the function Wm(pm) of the form given in

4.8.11 is a concave function of pm.

Description of W c
m(qm) in M∞

Recall the definition of W c
m(qm) in M∞. Let’s pick a specific firm of type

m. For each type g the number of workers of type g who apply to the firm

of type m is a random variable variable, denoted by xg. Random variables

x1, . . . , xG are independent and distributed according to Poisson distribution

with parameter qgm. The productivities of the workers who apply to the firm

are described by the following sequence, denoted by ω

ω =

 x1 copies of ω1m︷ ︸︸ ︷
ω1

1m, . . . , ωx1
1m,

x2 copies of ω2m︷ ︸︸ ︷
ω1

2m, . . . , ωx2
1m, . . . ,

xG copies of ωGm︷ ︸︸ ︷
ω1

Gm, . . . , ωxG
Gm

 (4.8.12)

Suppose that the
∑

g xg elements of the sequence ω are ordered in a

decreasing order so that

ω(1) ≥ ω(2) ≥ . . . ≥ ω(
∑

g xg) (4.8.13)
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where ω(j) is a jth largest element in sequence ω. The surplus, generated in

the firm of type m, can be written as follows.

W c
m(q) = E

min(Km,
∑

g xg)∑
j=1

(
ω(j) − rjm

)+
, (4.8.14)

where, as before, rjm is an increasing sequence of the reserve values of job

positions at the firm of type m and (ω(j) − rjm)+ = max(ω(j) − rjm, 0).

4.8.2 Bayesian Game and Optimization Problem

Lemma 4.8.1 A solution p̂ of the optimization problem 4.2.5 is also a sym-

metric Bayesian equilibrium of GI .

Proof. By definition (section 4.2.4, page 105), the expected aggregate

surplus W (p) is

W (p) = Eg,m

(∑
m

W̃m(g,m) | p

)
(4.8.15)

Let’s consider the expected aggregate surplus function as a function of a

profile of asymmetric application probabilities (p1, . . . ,pI), where pi = (pi
gm)

is a matrix of application probabilities of worker i. The function, denoted by

W asym(p1, . . . ,pI), is defined as

W asym(p1, . . . ,pI) = Eg,m

(∑
m

W̃m(g,m) | p1, . . . ,pI

)
(4.8.16)

Maximization of the function W (p) with respect to p is equivalent to maxi-

mization of the function W asym(p1, . . . ,pI) with respect to p1, . . . ,pI under

the constraints pl = pj for any l and j. Let p−i = (p1, . . . ,pi−1,pi+1, . . . ,pI)

and let −→p = (p1, . . . ,pI). The function W asym(−→p ) can be rewritten as

W asym(−→p ) =
∑
m

Egi,mi

[
Eg−i,m−i

(
W̃m(g,m) | gi, mi,p

−i
)∣∣∣pi

]
(4.8.17)
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where g−i = (g1, . . . , gi−1, gi+1, gI), m−i = (m1, . . . ,mi−1, mi+1, mI), Egi,mi

denotes expectation with respect to realizations of gi and mi, and Eg−i,m−i

denotes expectation with respect to realizations of g−i and m−i for given

distribution f and asymmetric application probabilities −→p .

Next I represent the expected surplus W asym(−→p ) as a sum of the expected

surplus, generated by all the workers except worker i and the expected con-

tribution of worker i to the aggregate expected surplus. Formally,

W asym(−→p ) =
∑
m

Egi,mi

[
Eg−i,m−i

(
W̃m(g,m)− W̃−i

m (g−i,m−i)+

W̃−i
m (g−i,m−i) | gi, mi,p

−i
)∣∣∣pi

]
= Eg−i,m−i

(∑
m

W̃−i
m (g−i,m−i) | p−i

)
+ Egi,mi

[
Eg−i,m−i

(
ṽi(g,m)|gi, mi,p

−i
)∣∣∣pi

]
(4.8.18)

where ṽi(g,m) = W̃m(g,m) − W̃−i
m (g−i,m−i). Suppose that p̂ is a solution

of the optimization problem

max
p

W (p) (4.8.19)

and suppose that the profile of application probability matrices (p1, . . . ,pI)

such that pi = p̂ for all i is not an equilibrium of the model. Then for

some i there exists a deviation from strategy pi to some other strategy p̃

that increases the expected payoff of worker i. By definition, the expected

payoff of worker i is Egi,mi

[
Eg−i,m−i

(
ṽi(g,m)|gi, mi,p

−i
)∣∣∣pi

]
. Therefore, it

follows from 4.8.18 that a deviation from matrix pi to matrix p̃ increases

the aggregate expected surplus W asym(−→p ). Moreover, since the aggregate

expected surplus W asym(−→p ) is a linear function with respect to pi

W asym(−→p ) = Eg−i,m−i

(∑
m

W̃−i
m (g−i,m−i) | p−i

)
+
∑
gi,mi

fgi
pi

gimi

[
Eg−i,m−i

(
ṽi(g,m)|gi, mi,p

−i
)]

(4.8.20)
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the directional derivative of W asym(−→p ) in the direction (0, . . . ,

element i

0,
︷ ︸︸ ︷
p̃− pi, 0, . . . , 0)

is positive. Function W asym(−→p ) is symmetric with respect to pi. Therefore,

the directional derivative of W asym(−→p ) in the direction (0, . . . ,

element j

0,
︷ ︸︸ ︷
p̃− pj, 0, . . . , 0)

is positive for any j. Since the objective function W asym(−→p ) is continuously

differentiable with respect to −→p the directional derivative of the function in

the direction (p̃−p, . . . , p̃−p) is also positive. Thus, the profile of application

probability matrices (p̂, . . . , p̂) is not a solution of the problem

max
(p1,...,pI)

W asym(p1, . . . ,pI) s.t. pl = pj for any l, j (4.8.21)

and, therefore, p̂ does not maximize the function W (p).

Theorem 4.3.1 The set of solutions of the first-order conditions of the

optimization problem 4.2.5 coincides with the set of symmetric Bayesian equi-

libria of GI .

Proof. Let’s consider the surplus maximization problem
maxp W (p)∑

m pgm = 1
pgm ≥ 0

(4.8.22)

I call matrix of application probabilities p a feasible matrix if it satisfies

constraints in 4.8.22. By definition of W asym

W (p) = W asym(p, . . . ,p) (4.8.23)

Suppose that p̂ is a symmetric equilibrium of the model. Then from

4.8.20 it follows that for any feasble matrix of application probabilities p̃

W asym(p, . . . ,p, . . . ,p) ≥ W asym(p, . . . , p̃, . . . ,p) (4.8.24)

Therefore, the directional derivative of W asym in the direction (0, . . . , 0, p̃−

p, 0, . . . , 0) is non-negative. Thus, directional derivative of W in the direction
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p̃−p is non-negative for any feasible matrix p̃. This is true only if the first-

order conditions hold at the point p.

Suppose now that the first-order conditions are satisfied at point p. Then

the directional derivative of the function W is nondecreasing in any direction

p̃−p. Note that either any i the directional derivatives of W asym in the direc-

tion (0, . . . , 0, p̃−p, 0, . . . , 0), where p̃−p is at ith position, are nonnegative

or all are positive. From 4.8.23 it follows that only the first possibility can

be true. Since the function W asym is linear in each pi the function W asym is

nondecreasing in the direction (0, . . . , 0, p̃ − p, 0, . . . , 0). Therefore, p is an

equilibrium.

Corollary 4.3.2 If the expected aggregate surplus function W (p) is con-

cave then any symmetric equilibrium of GI maximizes W (p). If the function

W (p) is strictly concave then there exists a unique symmetric equilibrium of

GI .

Proof. The corollary follows immediately from the theorem 4.3.1.

4.8.3 Properties of Optimization Problem

Discrete Model

Note that there is a linear relationship hg = fgpgm between distribution h and

application probabilities p. Therefore, concavity of the function E
∑Km

i=1 X(i)

with respect to h implies concavity of the function Wm(pm) with respect to

pm.

Proposition 4.8.3 Let X1, X2, . . . , XI be independent identically distributed

random variables. Let {ω0, ω1, . . . , ωG} be a support of the random variables

and let h = (h0, h1, . . . , hG) (where hg = Pr(Xi = ωg)) denote a common
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distribution of the random variables. Then for any k, the function V k(h) =

E
∑k

i=1 X(i) is a concave function of distribution h.

Proof. Let µi,n = EX(i), where X(i) is ith order statistics constructed

from n i.i.d random variables X1, X2, . . . , Xn. Let ha = (ha
0, . . . , h

a
G) and hb =

(hb
0, . . . , h

b
G) be two arbitrary distributions with support {ω0, ω1, . . . , ωG} and

h(λ) = λha + (1− λ)hb, λ ∈ [0, 1]. Let also Ha, Hb and H(λ) be the cumula-

tive distribution functions that corresponds to distributions ha, hb and h(λ).

Given h(λ) I find the expectations µi,n, i = k . . . n. I need to show that the

function
∑

i=k...n µi,n is a concave function of λ ∈ [0, 1] for an arbitrary choice

of distributions ha and hb. The proof is shown in two steps:

(a) µi,n =
∑

j=i...n

(
j−1
i−1

)(
n
j

)
(−1)j−iµj,j

reference: H.A. David [10],

where
(

n
j

)
= n!

j!(n−j)!
and µj,j =

∑G
g=0(ωg+1 − ωg)(1 − [Hg(λ)]j). (The

function [Hg(λ)]j is a cumulative distribution function of the jth order

statistic X(j) if the sequence size is j). I need to show that the following

function is negative:

∂2

∂λ2

n∑
i=k

µi,n = −
G∑

g=0

(ωg+1 − ωg)
[
Ha

g −Hb
g

]2×
×

n∑
i=k

n∑
j=i

j(j − 1)

(
n

j

)(
j − 1

i− 1

)
(−1)j−i (Hg(λ))j−2 ≤ 0 (4.8.25)

(b) φk,n(s) =

=
∑n

i=k

∑n
j=i j(j − 1)

(
n
j

)(
j−1
i−1

)
(−1)j−isj−2 is nonnegative for any k, n,

and s ∈ [0, 1]. This is shown in the following lemma.
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Lemma 4.8.2

φk,n(s) =
n!

(k − 2)!(n− k)!
sk−2(1− s)n−k (4.8.26)

Proof.

φk,n(s) =
n∑

i=k

n∑
j=i

j(j − 1)
n!

j!(n− j)!

(j − 1)!

(i− 1)!(j − i)!
(−1)j−isj−2 =

=
n∑

i=k

n∑
j=i

n!

i!(j − i)!(n− j)!
(j − 1)i(−1)j−isj−2 =

denote l = j − i and
change summation order

=
n−k∑
l=0

n−l∑
i=k

n!

i!(l)!(n− l − i)!
i(l + i− 1)(−1)lsl+i−2

(4.8.27)

k n

n− k

l =
n−

i

i

l

The picture shows the (i, l) region (filled with red) over which the summation takes

place

Let

ϕk,n(s) =
∑n−k

l=0

∑n−l
i=k

n!
i!(l)!(n−l−i)!

i(−1)lsl+i−1,

ϕk,n(s, t) =
∑n−k

l=0

∑n−l
i=k

n!
i!(l)!(n−l−i)!

i(−1)lsi−1tl,

ζk,n(s, t) =
∑n−k

l=0

∑n−l
i=k

n!
i!(l)!(n−l−i)!

(−1)lsitl

The following equalities hold
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φk,n(s) = ∂
∂s

ϕk,n(s),

ϕk,n(s) = ϕk,n(s, s),

ϕk,n(s, t) = nζk−1,n−1(s, t)

The first two equations are trivial. The last equation holds because ϕk,n(s, t) =

n
∑(n−1)−(k−1)

l=0

∑n−1−l
i−1=k−1

(n−1)!
(i−1)!(l)!((n−1)−l−(i−1))!

(−1)lsi−1tl.

Taking derivative of ζk,n(s, t) with respect to t and s I get the following

identities:

∂ζk,n(s,t)

∂t
=
∑n−k

l=1

∑(n−1)−(l−1)
i=k

n(n−1)!
i!(l−1)!(n−1−i−(l−1))!

(−1)(−1)l−1sitl−1 = −nζk,n−1

∂ζk,n(s,t)

∂s
=
∑n−k

l=0

∑n−l
i=k

n(n−1)!
(i−1)!l!(n−1−(i−1)−l)!

(−1)lsi−1tl = nζk−1,n−1

Therefore

φk,n(s) =
∂

∂s
ϕk,n(s, s) =

∂

∂s
ϕk,n(s, t)|t=s +

∂

∂t
ϕk,n(s, t)|t=s =

= n
∂

∂s
ζk−1,n−1(s, t)|t=s +

∂

∂t
ζk−1,n−1(s, t)|t=s =

= n(n− 1)(ζk−2,n−2(s, s)− ζk−1,n−2(s, s))

Finally,
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ζk+1,n(s, s) =
n−k−1∑

l=0

n−l∑
i=k+1

n!

i!(l)!(n− l − i)!
(−1)lsl+i =[

increase the upper index in the 1st sum
decrease the lower index in the 2nd sum

]
=

n−k∑
l=0

[
n−l∑
i=k

n!

i!(l)!(n− l − i)!
(−1)lsl+i − n!

k!l!(n− k − l)!
(−1)lsk+l

]
−

k∑
i=k+1

(. . .) =

= ζk,n(s, s)−
n−k∑
l=0

n!

k!l!(n− k − l)!
(−1)lsk+l =

= ζk,n(s, s)− n!

k!(n− k)!
sk

n−k∑
l=0

(n− k)!

l!(n− k − l)!
(−1)lsl =

= ζk,n(s, s)− n!

k!(n− k)!
sk(1− s)n−k (4.8.28)

which proves the lemma.

Proposition 4.8.4 Let’s define function V (p) as follows. There is an infi-

nite staircase and a lady standing at the bottom of the staircase. The lady

flips a coin I times. Each time the coin shows heads, the lady goes one step

up. Each time the coin shows tails, she does not move. The probability of

heads is p. Function V (p) is defined as expected height that the lady goes up.

Then V (p) is a concave function of p if the height of the stairs is decreasing

with the height and is a convex function of p if the height of the stairs is

increasing with the height.

Proof. Let Vi be cumulative height of i steps, (V0 = 0, Vn = V ) and

vi = Vi − Vi−1 be the height of step i. By assumption vi is decreasing

with i. The expected height that the lady goes up is equal to W (p) =∑n
i=0 Ci

np
i(1− p)n−iVi = V −

∑n
i=0 viP

(1)
i = V +

∑n
i=04viP

(2)
i , where P

(1)
i =∑i

s=0 Cs
np

s(1− p)n−s, P
(2)
i =

∑i
s=0 P

(1)
s , and 4vi = vi+1 − vi ≤ 0.
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To finish the proof I have to show that P (2)(p) is a convex function. This

is done in the following lemma.

Lemma 4.8.3
∂P

(1)
i,n

∂p
= −npi,n−1 or, more generally,

∂P
(k)
i,n

∂pk = (−1)k n!
(n−k)!

pi,n−k.

where pi,n is the distribution of the Binomial B(p, n) distribution and P
(k)
i,n is

the kth cumulative sum of the binomial B(p, n) distribution.

Proof. This is proved by taking directly the derivative of P
(1)
i,n =

∑i
s=0 Cs

np
s(1−

p)n−s with respect to p.

Theorem 4.2.1 Suppose that either

(a) Firm m ∈ {1, ...M} has a constant reserve value of each job position

(that is, for each m, rjm = rm for all j)

or

(b) The productivity of a worker does not depend on the type of the worker

at firm m ∈ {1, ...M} (that is, for each m, ωgm = ωm for any g)

Then the expected surplus function W (p) is a concave function of a

G × M matrix of application probabilities p on the set of all feasible

matrices of application probabilities.

Proof. If restriction (a) holds then the function Wm(p) can be rep-

resented as described in Proposition 4.8.1. The concavity of the function

follows then from Proposition 4.8.3.

If restriction (b) holds then the function Wm(p) can be represented as

described in Proposition 4.8.2. The concavity of the function follows then

from Proposition 4.8.4.

Concavity of Wm(p) implies immediately concavity of W (p) =
∑

m Wm(p).
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Continuous Model

Lemma 4.6.1 If Assumption 4.6.1 holds then the function W c
m(qm) is strictly

concave and, therefore, for any vector u = (u1, . . . , uG) there exists a unique

solution q̂m to the optimization problem

max
qm≥0

[
W c

m(qm)−
∑

g

uqqgm

]
+
∑

g

αgug (4.8.29)

Proof. Without loss of generality, let’s assume that the productivity of

workers at a firm of type m are ordered as follows

ω1m > ω2m > . . . > ωGm > rm (4.8.30)

so that the function W c
m(q1m, . . . , qGm) can be written as follows

W c
m(q1m, . . . , qGm) =

= ω1m − (ω1m − ω2m) exp(−q1m))− (ω2m − ω3m) exp(−q1m − q2m))−

− . . .− ωGm exp(−q1m − . . .− qGm)) (4.8.31)

Let’s make a change of variable xm = Aqm in the function W c
m(qm), where

matrix A has ones on the main diagonal and everywhere below the main

diagonal and matrix A has zeros everywhere above the main diagonal. The

function W c
m(q) can be written as W c

m(qm) = vm(Aqm), where

vm(xm) = ω1m − (ω1m − ω2m) exp(−x1m)− (ω2m − ω3m) exp(−x2m)−

. . .− ωGm exp(xGm) (4.8.32)

The second derivative of W c
m(qm) with respect to qm is equal to

∂2W c
m

∂q2
m

= AT ∂2vm

∂x2
m

(Aqm)A (4.8.33)

Strict concavity of W c
m(qm) follows from equation 4.8.33, strict concavity of

the function vm(xm), and non-singularity of matrix A.
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Uniqueness of the solution of optimization problem 4.8.29 follows from

strict concavity of the function W c
m(qm).

Lemma 4.8.4 Suppose that Assumption 4.6.1 holds. Let [D2W c
m]

−1
be the

inverse of the second derivative matrix of W c
m(qm). Then the matrix [D2W c

m]
−1

has the following properties. Matrix [D2W c
m]

−1
has negative elements on the

main diagonal and positive elements on the diagonals below and above the

main diagonals. All the other elements are zero. The sum of the elements

along any row or column is smaller or equal to zero.

Proof. Let’s make the same change of variables as in the proof of Lemma

4.6.1. It can be directly verified that the matrix A−1 has ones on the main

diagonal, minus ones on the diagonal below the main and zeros everywhere

else. The second derivative of W c
m(qm) with respect to qm is given in 4.8.33.

Therefore, the inverse of ∂2W c
m

∂q2 is equal to

∂2W c
m

∂q2
m

−1

= A−1Λm(AT )−1 (4.8.34)

where the matrix

Λm =

(
∂2vm

∂x2
m

)−1

(Aqm) (4.8.35)

has negative elements −λgm = [− exp(−xgm)(ωgm − ωg+1m)]−1 on the main

diagonal and zero off-diagonal elements. Multiplying the matrices in 4.8.34, I

obtain the matrix that has the following elements in the gth row, g = 1, . . . , G.

The element at position g is −λg−1m − λgm, the elements at positions g − 1

and g + 1 are λg−1m and λgm, and the element at any other position is zero.

The sum of the elements in each row and column is equal to zero except the

last row and column where the sum is smaller or equal to zero.

Lemma 4.6.2 The solution qgm(u) of the optimization problem 4.8.29

has the following properties.
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1. For each g, the function qgm(u1, . . . , uG) is a non-increasing function

of ug.

2. For each g, the function qgm(u1, . . . , uG) is a non-decreasing function

of uh for any h 6= g.

Proof. Let u = (u1, . . . , uG) and qm(u) = (q1m(u), . . . , qGm(u)). The

function qm(u) is the solution of the following optimization problem.

max
qm≥0

[
W c

m(qm)−
∑

l

ulqlm

]
(4.8.36)

Consider first the case that qgm(u) = 0. As uh increases, the function qgm(u)

does not decreasing since qgm(u) ≥ 0. Suppose now that ug increases. The

objective function in 4.8.36 decreases for all positive values of qgm and does

not change if qgm = 0. Therefore, the solution of 4.8.36 does not change with

an increase in ug.

Suppose now that qgm(u) > 0. Let γgm denote lagrange multipliers associ-

ated with constraints qgm ≥ 0 and let Γ+
m = {l : γlm(u) = 0}. Without loss of

generality, let’s assume that Γ+
m = {1, 2, . . . , G0}. Let q+

m = (qlm, . . . , qG0m),

u+ = (ulm, . . . , uG0m), and W c,+
m (q+

m) = W c
m(q1m, . . . , qG0m, 0 . . . , 0). Let’s

consider the following unconstrained optimization problem

max
qm

W c,+
m (q+

m)−
∑
l∈Γ+

m

u+
l q+

lm

 (4.8.37)

Note that the functional form of W c
m(qm), given in 4.8.31, and W c,+

m (q+
m)

is similar and Assumption 4.6.1 holds in the case of W c,+
m (q+

m). There-

fore, Lemma 4.8.4 applies to W c,+
m (q+

m). The solution of 4.8.37, denoted

by q+
m(u+), can be found from the first-order conditions

dW c,+
m

dq+
m

= u+ (4.8.38)
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Taking derivative with respect to u+ of the left- and right-hand side in 4.8.38

I obtain the following expression for dq+
m

du+

dq+
m

du+
=
[
D2W c,+

m

]−1
(4.8.39)

By Lemma 4.8.4, the derivative of q+
gm is negative with respect to g and

positive with respect to any h 6= g. Therefore, if ug increases by some small

ε then q+
gm decreases and q+

hm increases for any h 6= g. The new solution is

feasible and, therefore, the vector q = (q+, 0) is the solution of 4.8.36.

4.8.4 Convergence

The convergence theorems are quite technical.

Proposition 4.5.1 Suppose that a set of firms F is identical from the

point of view of all workers. That is, the number of jobs, the reserve values

of the jobs, and the productivity of a worker of type g ∈ {1, . . . , G} is the

same at each firm in the set. Then there exists a surplus maximizing matrix

of application probabilities such that for each g workers of types g apply with

equal probabilities to the firms in the set.

Proof. Let’s assume without loss of generality that the set of the iden-

tical firms is F = {1, . . . ,M1}. Let pgm denote the surplus maximizing

application probabilties. Let also Σ denote the set of all possible permuta-

tions of the elements (1, 2, . . . ,M1). Because the firms 1, . . . ,M1 are identical

the application probabilties pσ
gm = pgσ(m) for m = 1, . . . ,M1 and pσ

gm = pgm

for m = M1 + 1, . . . ,M are optimal for an arbitrary permutation σ ∈ Σ.

Since the expected surplus functional is concave I obtain W ( 1
M1!

∑
σ∈Σ pσ) ≥

1
M1!

∑
σ∈Σ W (pσ) = W (p). Therefore, the matrix of application probabilties

1
M1!

∑
σ∈Σ pσ maximizes the surplus and the firms m = 1, . . . ,M1 are selected

with the same probability.
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Theorem 4.6.1

1. Suppose that p and q are such that

pgm =
βm

αg

qgm (4.8.40)

Then W
(n)
m (p) → W c

m(q) and, therefore, W (n)(p)
n

→ W c(q) as n → ∞,

where the convergence is pointwise.

2. Suppose that the functions W (n)(p) are concave with respect to p for

any n. Then the function W c(q) is concave with respect to q.

Proof. The general intuition is standard. Informally, it says that the sum

of a large number of arbitrary distributed random variables each of which is

close to zero is distributed approximately as a Poisson distribution. There

obviously exist general theorems that formalize the idea. I show this directly

without making reference to any results.

By the central limit theorem the number of workers of type g in a large

finite model is distributed as α̃g ' αgn +
√

nZg, where Zg is some gaussian

random vector. The choice of a firm of type m by a worker of type g is a ran-

dom variable Y i
gm with a distribution Y i

gm =

{
1 with probability pgm

n

0 with probability 1− pgm

n

.

Y i
gm = 1 if the worker selects the firm and zero otherwise. The characteristic

function of Y i
gm is ϕ

(n)
gm(z) = 1 − pgm

n
(1 − z). (The characteristic function is

defined as ϕ
(n)
gm(z) = EzY i

gm).

The number of the workers that apply to the firm m is a random vari-

able ζ
(n)
gm =

∑α̃g

i=1 Y i
gm. Let φ

(n)
gm(z) be the characteristic function of ζ

(n)
gm . I have

φ
(n)
gm(z) = Eα̃g(ϕ

(n)
gm)α̃g . As α̃g

n
→ αg I have limn→∞ φ

(n)
gm(z) = limn→∞

[
1− pgm

n
(1− z)

]nαg
=

exp(−qgm(1 − z)). But the function exp(−qgm(1 − z)) is the characteristic

function of the Poisson distribution with parameter qgm.
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Since all the functions that I consider are continuous and bounded the

weak convergence of the distributions guarantee the convergence of the ex-

pectations of the surplus functionals.
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